Topics of This Lecture

- Graphical Models
 - Introduction
- Directed Graphical Models (Bayesian Networks)
 - Notation
 - Conditional probabilities
 - Computing the joint probability
 - Factorization
 - Conditional Independence
 - D-Separation
 - Explaining away
- Outlook: Inference in Graphical Models

Graphical Models - What and Why?

- It’s got nothing to do with graphics!
- Probabilistic graphical models
 - Marriage between probability theory and graph theory.
 - Formalize and visualize the structure of a probabilistic model through a graph.
 - Give insights into the structure of a probabilistic model.
 - Find efficient solutions using methods from graph theory.
- Natural tool for dealing with uncertainty and complexity.
- Becoming increasingly important for the design and analysis of machine learning algorithms.
- Often seen as new and promising way to approach problems related to Artificial Intelligence.

Graphical Models

- There are two basic kinds of graphical models
 - Directed graphical models or Bayesian Networks
 - Undirected graphical models or Markov Random Fields

Key components

- Nodes
- Edges
 - Directed or undirected

Directed graphical model
Undirected graphical model

Topics of This Lecture

- Graphical Models
 - Introduction
- Directed Graphical Models (Bayesian Networks)
 - Notation
 - Conditional probabilities
 - Computing the joint probability
 - Factorization
 - Conditional Independence
 - D-Separation
 - Explaining away
- Outlook: Inference in Graphical Models
Example: Wet Lawn

- Mr. Holmes leaves his house.
 - He sees that the lawn in front of his house is wet.
 - This can have several reasons: Either it rained, or Holmes forgot to shut the sprinkler off.
 - Without any further information, the probability of both events (rain, sprinkler) increases (knowing that the lawn is wet).

- Now Holmes looks at his neighbor’s lawn
 - The neighbor’s lawn is also wet.
 - This information increases the probability that it rained. And it lowers the probability for the sprinkler.

⇒ How can we encode such probabilistic relationships?

Directed Graphical Models

- **Directed graphical model / Bayesian network:**
 - “Rain can cause both lawns to be wet.”
 - “Holmes’ lawn may be wet due to his sprinkler, but his neighbor’s lawn may not.”

Directed Graphical Models

- **Nodes or random variables**
 - We usually know the range of the random variables.
 - The value of a variable may be known or unknown.
 - If they are known (observed), we usually shade the node:
 - unknown
 - known

- **Examples of variable nodes**
 - Binary events: Rain (yes / no), sprinkler (yes / no)
 - Discrete variables: Ball is red, green, blue, ...
 - Continuous variables: Age of a person, ...

Directed Graphical Models

- **Most often, we are interested in quantitative statements**
 - i.e. the probabilities (or densities) of the variables.
 - Example: What is the probability that it rained? ...

 - These probabilities change if we have
 - more knowledge,
 - less knowledge, or
 - different knowledge
 about the other variables in the network.

- **Simplest case:**

 - This model encodes
 - The value of b depends on the value of a.
 - This dependency is expressed through the conditional probability:
 \[p(b|a) \]
 - Knowledge about a is expressed through the prior probability:
 \[p(a) \]
 - The whole graphical model describes the joint probability of a and b:
 \[p(a, b) = p(b|a)p(a) \]
If we have such a representation, we can derive all other interesting probabilities from the joint.

- E.g. marginalization

\[p(a) = \sum_b p(a, b) = \sum_b p(b|a)p(a) \]
\[p(b) = \sum_a p(a, b) = \sum_a p(b|a)p(a) \]

- With the marginals, we can also compute other conditional probabilities:

\[p(a|b) = \frac{p(a, b)}{p(b)} \]

With the marginals, we can also compute other conditional probabilities:

\[p(a|b) = \frac{p(a, b)}{p(b)} \]

Example

As before, we can compute

\[p(a, b) = p(b|a)p(a) \]

But we can also compute the joint distribution of all three variables:

\[p(a, b, c) = p(c|a, b)p(a, b) = p(c|b)p(b|a)p(a) \]

We can read off from the graphical representation that variable c does not depend on a, if b is known.

How? What does this mean?

Directed Graphical Models

- Chains of nodes:

\[a \rightarrow b \rightarrow c \]

Directed Graphical Models

- Convergent connections:

\[a \rightarrow b \rightarrow c \]

Directed Graphical Models

- Example:

\[p(C) \]
\[p(S|C) \]
\[p(R|C) \]
\[p(W|R, S) \]

Let’s see what such a Bayesian network could look like:

- Structure?
- Variable types? Binary.
- Conditional probabilities?

Directed Graphical Models

- A general directed graphical model (Bayesian network) consists of

 - A set of variables: \(U = \{x_1, \ldots, x_n\} \)
 - A set of directed edges between the variable nodes.
 - The variables and the directed edges define an acyclic graph.
 - Acyclic means that there is no directed cycle in the graph.
 - For each variable \(x_i \) with parent nodes \(p_a_i \) in the graph, we require knowledge of a conditional probability:

\[p(x_i|\{x_j|j \in p_a_i\}) \]
Directed Graphical Models

- Given
 - Variables: \(U = \{x_1, \ldots, x_n\} \)
 - Directed acyclic graph: \(G = (V,E) \)
 - \(V \): nodes = variables, \(E \): directed edges
 - We can express / compute the joint probability as
 \[
 p(x_1, \ldots, x_n) = \prod_{i=1}^{n} p(x_i|\{x_j | j \in \text{pa}_i\})
 \]
 where \(\text{pa}_i \) denotes the parent nodes of \(x_i \).
 - We can express the joint as a product of all the conditional distributions from the parent-child relations in the graph.
 - We obtain a factorized representation of the joint.

Exercise: Computing the joint probability

\[
p(x_1, \ldots, x_7) = ?
\]

\[
p(x_1)p(x_2)p(x_3)p(x_4|x_1, x_2, x_3)
p(x_5|x_1, x_3)p(x_6|x_4) \ldots
\]
Exercise: Computing the joint probability

\[p(x_1, \ldots, x_T) = p(x_1)p(x_2)p(x_3|x_1, x_2, x_3) \]
\[p(x_5|x_1, x_3)p(x_6|x_4)p(x_7|x_4, x_5) \]

General factorization

\[p(x) = \prod_{k=1}^{N} p(x_k | pa_k) \]

We can directly read off the factorization of the joint from the network structure!

Example: Classifier Learning

- Bayesian classifier learning
 - Given \(N \) training examples \(x = (x_0, \ldots, x_N) \) with target values \(t \)
 - We want to optimize the classifier \(y \) with parameters \(w \).
 - We can express the joint probability of \(t \) and \(w \):
 \[p(t, w) = p(w) \prod_{n=1}^{N} p(t_n|w, x_n) \]
 - Corresponding Bayesian network:

```
  w
  \[ \sim \text{"Plate"} \]
  \[ \text{(short notation for } N \text{ copies)} \]
```

Conditional Independence

- Suppose we have a joint density with 4 variables.

 \[p(x_0, x_1, x_2, x_3) \]

 - For example, 4 subsequent words in a sentence:
 \(x_0 = \text{"Machine"}, \ x_1 = \text{"learning"}, \ x_2 = \text{"is"}, \ x_3 = \text{"fun"} \)
 - The product rule tells us that we can rewrite the joint density:

 \[p(x_0, x_1, x_2, x_3) = p(x_0)p(x_1|x_0)p(x_2|x_0, x_1)p(x_3|x_0, x_1, x_2) \]

 \[= p(x_0)p(x_1|x_0)p(x_2|x_1)p(x_3|x_2) \]

 \[= p(x_0)p(x_1|x_0)p(x_2|x_1)p(x_3|x_2) \]

Conditional Independence

- The notion of conditional independence means that
 - Given a certain variable, other variables become independent.

 - More concretely here:

 \[p(x_5|x_0, x_1, x_2) = p(x_5|x_2) \]

 - This means that \(x_5 \) is conditionally independent from \(x_0 \) and \(x_1 \) given \(x_2 \).

 \[p(x_7|x_4, x_5) = p(x_7|x_4) \]

 - This means that \(x_7 \) is conditionally independent from \(x_5 \), given \(x_4 \).

 - Why is this?

 \[p(x_7|x_4, x_5) = p(x_7|x_4)p(x_5|x_1) \]

 - \(p(x_7|x_4) = p(x_7|x_4) \)

 - \(p(x_5|x_1) \)

 - Independent given \(x_4 \).
Conditional Independence - Notation

- \(X \) is conditionally independent of \(Y \) given \(V \)
 - Equivalence: \(X \perp Y | V \Leftrightarrow p(X|Y,V) = p(X|V) \)
 - Also: \(X \perp Y | V \Leftrightarrow p(X,Y|V) = p(X|V)p(Y|V) \)
 - Special case: Marginal Independence
 \(X \perp Y \Leftrightarrow X \perp Y | \emptyset \Leftrightarrow p(X,Y) = p(X)p(Y) \)
 - Often, we are interested in conditional independence between sets of variables:
 \(X \perp Y | V \Leftrightarrow \{X \perp Y | V, \forall X \in X \text{ and } \forall Y \in Y \} \)

Conditional Independence

- Directed graphical models are not only useful...
 - Because the joint probability is factorized into a product of simpler conditional distributions.
 - But also, because we can read off the conditional independence of variables.
- Let’s discuss this in more detail...

First Case: Divergent (“Tail-to-Tail”)

- Divergent model

 \[
 p(a, b) = \sum_c p(a, b, c) = \sum_c p(a,c)p(b|c)p(c)
 \]
 - In general, this is not equal to \(p(a)p(b) \).
 - The variables are not independent.

Second Case: Chain (“Head-to-Tail”)

- Let us consider a slightly different graphical model:

 \[
 p(a, b, c) = \sum_c p(a, c)p(b|c)p(c) = p(a)p(b|c)
 \]
 - If \(c \) becomes known, are \(a \) and \(b \) conditionally independent? Yes!

 \[
 p(a, b|c) = \frac{p(a, b, c)}{p(c)} = \frac{p(a,c)p(b|c)p(c)}{p(c)} = p(a)p(b|c)
 \]
Perceptual and Sensory Augmented Computing
Machine Learning, WS 13/14

Third Case: Convergent (“Head-to-Head”)
• Let’s look at a final case: Convergent graph
 > Are a and b independent? **YES**!
 > $p(a, b) = \sum_c p(a, b, c) = \sum_c p(c|a, b)p(a)p(b) = p(a)p(b)$
 > This is very different from the previous cases.
 > Even though a and b are connected, they are independent.

Summary: Conditional Independence
• Three cases
 > Divergent (“Tail-to-Tail”)
 > Conditional independence when c is observed.
 > Chain (“Head-to-Tail”)
 > Conditional independence when c is observed.
 > Convergent (“Head-to-Head”)
 > Conditional independence when neither c, nor any of its descendants are observed.

D-Separation
• Definition
 > Let A, B, and C be non-intersecting subsets of nodes in a directed graph.
 > A path from A to B is blocked if it contains a node such that either
 > The arrows on the path meet either head-to-tail or tail-to-tail at the node, and the node is in the set C, or
 > The arrows meet head-to-head at the node, and neither the node, nor any of its descendants, are in the set C.
 > If all paths from A to B are blocked, A is said to be d-separated from B by C.
• If A is d-separated from B by C, the joint distribution over all variables in the graph satisfies $A \perp B \mid C$.
 > Read: “A is conditionally independent of B given C.”

D-Separation: Example
• Exercise: What is the relationship between a and b?

Explaining Away
• Let’s look at Holmes’ example again:

 – Observation “Holmes’ lawn is wet” increases the probability of both “Rain” and “Sprinkler.”
Explaining Away

- Let’s look at Holmes’ example again:

 - Observation “Holmes’ lawn is wet” increases the probability of both “Rain” and “Sprinkler”.
 - Also observing “Neighbor’s lawn is wet” decreases the probability for “Sprinkler”. (They’re conditionally dependent!)
 - The “Sprinkler” is explained away.

The “Bayes Ball” Algorithm

- Game rules
 - An unobserved node ($W \notin V$) passes through balls from parents, but also bounces back balls from children.
 - An observed node ($W \in V$) bounces back balls from parents, but blocks balls from children.
 - The Bayes Ball algorithm determines those nodes that are d-separated from the query node.

Example: Bayes Ball

- Which nodes are d-separated from G given C and D?

Intuitive View: The “Bayes Ball” Algorithm

- Game
 - Can you get a ball from X to Y without being blocked by \bar{Y}?
 - Depending on its direction and the previous node, the ball can
 - Pass through (from parent to all children, from child to all parents)
 - Bounce back (from any parent/child to all parents/children)
 - Be blocked

Example: Bayes Ball

- Which nodes are d-separated from G given C and D?
Example: Bayes Ball

- Which nodes are d-separated from \(G \) given \(C \) and \(D \)?

Rule:

- \(F \) is d-separated from \(G \) given \(C \) and \(D \).

The Markov Blanket

- Markov blanket of a node \(x_i \):
 - Minimal set of nodes that isolates \(x_i \) from the rest of the graph.
 - This comprises the set of:
 - Parents,
 - Children, and
 - Co-parents of \(x_i \).

This is what we have to watch out for!

Summary

- Graphical models:
 - Marriage between probability theory and graph theory.
 - Give insights into the structure of a probabilistic model.
 - Direct dependencies between variables.
 - Conditional independence
 - Allow for efficient factorization of the joint.
 - Factorization can be read off directly from the graph.
 - Capability to explain away hypotheses by new evidence.

- Next lecture:
 - Undirected graphical models (Markov Random Fields)
 - Efficient methods for performing exact inference.

References and Further Reading

- A thorough introduction to Graphical Models in general and Bayesian Networks in particular can be found in Chapter 8 of Bishop’s book.

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006