Machine Learning - Lecture 1

Introduction

15.04.2009

Bastian Leibe
RWTH Aachen
http://www.umic.rwth-aachen.de/multimedia
leibe@umic.rwth-aachen.de

Language

- Official course language will be English
 - If at least one English-speaking student is present.
 - If not... you can choose.

- However...
 - Please tell me when I’m talking too fast or when I should repeat something in German for better understanding!
 - You may at any time ask questions in German!
 - You may turn in your exercises in German.

Organization

- Lecturer
 - Prof. Bastian Leibe (leibe@umic.rwth-aachen.de)

- Assistant
 - Dennis Mitzel (mitzel@umic.rwth-aachen.de)

- Course webpage
 - http://www.umic.rwth-aachen.de/multimedia
 → Teaching → Machine Learning
 - Slides will be made available on the webpage
 - There is also an L2P electronic repository

 Please subscribe to the lecture on the Campus system!
 - Important to get email announcements and L2P access!

Exercises and Supplementary Material

- Exercises
 - Typically 1 exercise sheet every 2 weeks
 - Pen & paper and Matlab based exercises
 - Hands-on experience with the algorithms from the lecture.
 - Send your solutions to Dennis the night before the exercise class.

- Supplementary material
 - Research papers and book chapters
 - Will be provided on the webpage.
 - Additional material will be given out if you need to take a V4 exam (Vertiefungslinie Diplom).

Textbooks

- Most lecture topics will be covered in Bishop’s book.
- Some additional topics can be found in Duda & Hart.

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006

R.O. Duda, P.E. Hart, D.G. Stork
Pattern Classification
2nd Ed., Wiley-Interscience, 2000

- Research papers will be given out for some topics.
 - Tutorials and deeper introductions.
 - Application papers
How to Find Us

- Office:
 - UMIC Research Centre
 - Mies-van-der-Rohe-Strasse 15, room 124

- Open door policy (until further notice)
 - If you have questions to the lecture, come to Dennis or me.
 - Send us an email before to confirm a time slot.

 Questions are welcome!

Machine Learning

- Goal
 - Machines that learn to perform a task from experience

- Why?
 - Crucial component of every intelligent/autonomous system
 - Important for a system’s adaptability
 - Important for a system’s generalization capabilities
 - Attempt to understand human learning

Machine Learning: Core Questions

- Learning to perform a task from experience

- Task
 - Can often be expressed through a mathematical function
 \[y = f(x; w) \]
 - \(x \): Input
 - \(y \): Output
 - \(w \): Parameter (this is what is “learned”)

- Classification vs. Regression
 - Regression: continuous \(y \)
 - Classification: discrete \(y \)
 - E.g. class membership, sometimes also posterior probability

Example: Regression

- Automatic control of a vehicle
Examples: Classification

- Email filtering \(x \in [a-z]^* \rightarrow y \in \{\text{important, spam}\} \)
- Character recognition
- Speech recognition

Machine Learning: Core Problems

- Input \(x \):
 \(\rightarrow y \in \{\text{ahh, eeh, ... ahh}\} \)
- Features
 - Invariance to irrelevant input variations
 - Selection of the “right” features is crucial
 - Encoding and use of “domain knowledge”
- Curse of dimensionality
 - Complexity increases exponentially with number of dimensions.

Machine Learning: Core Questions

- Learning to perform a task from experience
 - Performance: “99% correct classification”
 - Of what???
 - Characters? Words? Sentences?
 - Speaker/writer independent?
 - Over what data set?
 - ...
 - “The car drives without human intervention 99% of the time on country roads”

Machine Learning: Core Questions

- Learning to perform a task from experience
 - Performance measure:
 - Typically one number
 - % correctly classified letters
 - Average driving distance (until crash...)
 - % games won
 - % correctly recognized words, sentences, answers
 - Generalization performance
 - Training vs. test
 - “All” data

Machine Learning: Core Questions

- Learning to perform a task from experience
 - Performance measure: more subtle problem
 - Also necessary to compare partially correct outputs.
 - How do we weight different kinds of errors?
 - Example: L2 norm
 - What data is available?
 - Data with labels: supervised learning
 - Images / speech with target labels
 - Car sensor data with target steering signal
 - Data without labels: unsupervised learning
 - Automatic clustering of sounds and phonemes
 - Automatic clustering of web sites
 - Some data with, some without labels: semi-supervised learning
 - No examples: learning by doing
 - Feedback/rewards: reinforcement learning
Machine Learning: Core Questions

- $y = f(x; w)$
 - w characterizes the family of functions
 - w indexes the space of hypotheses
 - w: vector, connection matrix, graph, ...

Learning to perform a task from experience

- Learning
 - Most often learning = optimization
 - Search in hypothesis space
 - Search for the “best” function / model parameter w
 - I.e. maximize $y = f(x; w)$ w.r.t. the performance measure

Course Outline

- Fundamentals (2 weeks)
 - Bayes Decision Theory
 - Probability Density Estimation
- Discriminative Approaches (5 weeks)
 - Linear Discriminant Functions
 - Statistical Learning Theory & SVMs
 - Boosting, Decision Trees
- Generative Models (5 weeks)
 - Bayesian Networks
 - Markov Random Fields
- Regression Problems (2 weeks)
 - Gaussian Processes

Topics of This Lecture

- (Re-)view: Probability Theory
 - Probabilities
 - Probability densities
 - Expectations and covariances
- Bayes Decision Theory
 - Basic concepts
 - Minimizing the misclassification rate
 - Minimizing the expected loss
 - Discriminant functions

Probability Theory

"Probability theory is nothing but common sense reduced to calculation."
Pierre-Simon de Laplace, 1749-1827

- Example: apples and oranges
 - We have two boxes to pick from.
 - Each box contains both types of fruit.
 - What is the probability of picking an apple?
- Formalization
 - Let $B \in \{r, b\}$ be a random variable for the box we pick.
 - Let $F \in \{a, o\}$ be a random variable for the type of fruit we get.
 - Suppose we pick the red box 40% of the time. We write this as $p(B = r) = 0.4$ and $p(B = b) = 0.6$.
 - The probability of picking an apple given a choice for the box is $p(F = a | B = r) = 0.25$ and $p(F = a | B = b) = 0.75$.
 - What is the probability of picking an apple? $p(F = a)$ = ?
Probability Theory

- More general case
 - Consider two random variables $X \in \{x_i\}$ and $Y \in \{y_j\}$
 - Consider N trials and let $n_{ij} = \#\{X = x_i \land Y = y_j\}$
 - Then we can derive
 - Joint probability $p(X = x_i, Y = y_j) = \frac{n_{ij}}{N}$
 - Marginal probability $p(X = x_i) = \sum_j p(X = x_i, Y = y_j)$
 - Conditional probability $p(Y = y_j | X = x_i) = \frac{n_{ij}}{c_i}$

- Rules of probability
 - Sum rule $p(X = x_i) = \frac{1}{N} \sum_j \frac{1}{N} \sum_j n_{ij} = \sum_j p(X = x_i, Y = y_j)$
 - Product rule $p(X = x_i, Y = y_j) = \frac{n_{ij}}{N} = p(Y = y_j | X = x_i) p(X = x_i)$

The Rules of Probability

- Thus we have
 - Sum Rule $p(X) = \sum_Y p(X, Y)$
 - Product Rule $p(X, Y) = p(Y | X)p(X)$

- From those, we can derive
 - Bayes’ Theorem $p(Y | X) = \frac{p(X | Y)p(Y)}{p(X)}$ where $p(X) = \sum_Y p(X, Y) p(Y)$

Probability Densities

- Probabilities over continuous variables are defined over their probability density function (pdf) $p(x)$.
- The probability that x lies in the interval (a, b) is given by the cumulative distribution function $P(z) = \int_a^z p(x) \, dx$

Expectations

- The average value of some function $f(x)$ under a probability distribution $p(x)$ is called its expectation
 - Discrete case $\mathbb{E}[f] = \sum_x p(x) f(x)$
 - Continuous case $\mathbb{E}[f] = \int f(x) p(x) \, dx$

- If we have a finite number N of samples drawn from a pdf, then the expectation can be approximated by $\mathbb{E}[f] \approx \frac{1}{N} \sum_{n=1}^{N} f(x_n)$

- We can also consider a conditional expectation $\mathbb{E}_X[f | y] = \sum_x p(x | y) f(x)$

Variances and Covariances

- The variance provides a measure how much variability there is in $f(x)$ around its mean value $\mathbb{E}[f(x)]$.
 - Variance $\text{Var}[f] = \mathbb{E}[\{f(x) - \mathbb{E}[f(x)]\}^2] = \mathbb{E}[f(x)^2] - \mathbb{E}[f(x)]^2$

- For two random variables x and y, the covariance is defined by $\text{cov}[x, y] = \mathbb{E}_x \mathbb{E}_x [\{x - \mathbb{E}[x]\} \{y - \mathbb{E}[y]\}]$.

- If x and y are vectors, the result is a covariance matrix $\text{cov}[x, y] = \mathbb{E}_x [\{x - \mathbb{E}[x]\} \{y - \math{E}[y]\}]$.
Bayes Decision Theory

Example: handwritten character recognition

Goal:
Classify a new letter such that the probability of misclassification is minimized.

Concept 1: Priors (a priori probabilities)
What we can tell about the probability before seeing the data.
Example:

\[
p(C_1) = 0.75 \quad p(C_2) = 0.25
\]

In general:
\[
\sum_k p(C_k) = 1
\]

Concept 2: Conditional probabilities
Let \(x \) be a feature vector.
\(x \) measures/describes certain properties of the input.
E.g., number of black pixels, aspect ratio, ...
\(p(x|C_k) \) describes its likelihood for class \(C_k \).

Example:

\[
p(x|a) \quad p(x|b)
\]

Question:
Which class?
The decision should be 'a' here.

Question:
Which class?
Since \(p(x|a) \) is much smaller than \(p(x|b) \), the decision should be 'b' here.
Bayes Decision Theory

- **Example:**

 ![Graph showing probability distributions](image)

 - **Question:**
 - Which class?
 - Remember that \(p(a) = 0.75 \) and \(p(b) = 0.25 \), i.e., the decision should be again ‘a’.
 - How can we formalize this?

Bayes Decision Theory

- **Bayes Decision Theory**

 ![Bayes Decision Theory diagram](image)

 - **Goal:** Minimize the probability of a misclassification

 \[
 p(\text{misclass}) = p(x \in \mathcal{R}_1, C_1) + p(x \in \mathcal{R}_2, C_1)
 = \int_{\mathcal{R}_1} p(x, C_0) \, dx + \int_{\mathcal{R}_2} p(x, C_1) \, dx
 = \int_{\mathcal{R}_1} p(C_0|x) p(x) \, dx + \int_{\mathcal{R}_2} p(C_1|x) p(x) \, dx
 \]

 - **Concept 3: Posterior probabilities**

 - We are typically interested in the a posteriori probability, i.e., the probability of class \(C_i \) given the measurement vector \(x \).

 - **Bayes’ Theorem:**

 \[
 p(C_i | x) = \frac{p(x | C_i) p(C_i)}{\sum_j p(x | C_j) p(C_j)}
 \]

 - **Interpretation**

 \[
 \text{Posterior} = \frac{\text{Likelihood} \times \text{Prior}}{\text{Normalization Factor}}
 \]

Bayesian Decision Theory

- **Generalization to More Than 2 Classes**

 - Decide for class \(i \) whenever it has the greatest posterior probability of all classes:

 \[
 p(C_i | x) > p(C_j | x) \quad \forall j \neq k
 \]

 \[
 p(x | C_k) p(C_k) > p(x | C_j) p(C_j) \quad \forall j \neq k
 \]

 - **Likelihood-ratio test**

 \[
 \frac{p(x | C_k)}{p(x | C_j)} > \frac{p(C_j)}{p(C_k)} \quad \forall j \neq k
 \]
Classifying with Loss Functions

- Generalization to decisions with a **loss function**
 - Differentiate between the possible decisions and the possible true classes.
 - Example: medical diagnosis
 - Decisions: sick or healthy (or: further examination necessary)
 - Classes: patient is sick or healthy
- The cost may be asymmetric:
 - \(\text{loss}(\text{decision} = \text{healthy} | \text{patient} = \text{sick}) > > \text{loss}(\text{decision} = \text{sick} | \text{patient} = \text{healthy}) \)

Minimizing the Expected Loss

- In general, we can formalize this by introducing a loss matrix \(L_{kj} \)
 \[L_{kj} = \text{loss for decision } C_j \text{ if truth is } C_k. \]
- Example: cancer diagnosis
 \[L_{\text{cancer diagnosis}} = \begin{pmatrix} 0 & 1000 \\ 1 & 0 \end{pmatrix} \]

Minimizing the Expected Loss

- Optimal solution is the one that minimizes the loss.
 - But: loss function depends on the true class, which is unknown.
- Solution: **Minimize the expected loss**
 \[\mathbb{E}[L] = \sum_k \sum_j \int \mathbb{E}[L_{kj}] \, dx \]
 - This can be done by choosing the regions \(R_j \) such that
 \[\mathbb{E}[L] = \sum_k \mathbb{E}[L_{kj}] \]
 which is easy to do once we know the posterior class probabilities \(p(C_k | x) \).

Minimizing the Expected Loss

- Example:
 - 2 Classes: \(C_1, C_2 \)
 - 2 Decision: \(\alpha_1, \alpha_2 \)
 - Loss function: \(L(\alpha_j | C_i) = L_{kj} \)
 - Expected loss (or risk) \(\mathbb{E}[L(\alpha_j | C_i)] = R(\alpha_j | x) \)
 for the two decisions:
 \[R(\alpha_2 | x) = R(\alpha_1 | x) = L_{11} p(C_1 | x) + L_{21} p(C_2 | x) \]
 - Goal: Decide such that expected loss is minimized
 - i.e. decide \(\alpha \) if \(R(\alpha_2 | x) > R(\alpha_1 | x) \)

Minimizing the Expected Loss

- Example:
 - 2 Classes: \(C_1, C_2 \)
 - 2 Decision: \(\alpha_1, \alpha_2 \)
 - Loss function: \(L(\alpha_j | C_i) = L_{kj} \)
 - Expected loss (or risk) \(\mathbb{E}[L(\alpha_j | C_i)] = R(\alpha_j | x) \)
 for the two decisions:
 \[R(\alpha_2 | x) = R(\alpha_1 | x) = L_{11} p(C_1 | x) + L_{21} p(C_2 | x) \]
 - Goal: Decide such that expected loss is minimized
 - i.e. decide \(\alpha \) if \(R(\alpha_2 | x) > R(\alpha_1 | x) \)
The Reject Option

- Classification errors arise from regions where the largest posterior probability \(p(C_i | x) \) is significantly less than 1.
 - These are the regions where we are relatively uncertain about class membership.
 - For some applications, it may be better to reject the automatic decision entirely in such a case and e.g. consult a human expert.

Discriminant Functions

- Formulate classification in terms of comparisons
 - Discriminant functions
 \(y_1(x), \ldots, y_K(x) \)
 - Classify \(x \) as class \(C_k \) if
 \(y_k(x) > y_j(x) \quad \forall j \neq k \)

- Examples (Bayes Decision Theory)
 \[
 y_k(x) = p(C_k | x) \\
 y_k(x) = p(x | C_k) p(C_k) \\
 y_k(x) = \log p(x | C_k) + \log p(C_k)
 \]

Next Lectures...

- Ways how to estimate the probability densities \(p(x | C_k) \)
 - Non-parametric methods
 - Histograms
 - k-Nearest Neighbor
 - Kernel Density Estimation
 - Parametric methods
 - Gaussian distribution
 - Mixtures of Gaussians
 - Discriminant functions
 - Linear discriminants
 - Support vector machines

References and Further Reading

- More information, including a short review of Probability theory and a good introduction in Bayes Decision Theory can be found in Chapters 1.1, 1.2 and 1.5 of

 Christopher M. Bishop
 Pattern Recognition and Machine Learning
 Springer, 2006

Image source: C.M. Bishop, 2006