Course Outline

- Fundamentals (2 weeks)
 - Bayes Decision Theory
 - Probability Density Estimation
 - Mixture Models and EM
- Discriminative Approaches (5 weeks)
 - Linear Discriminant Functions
 - Statistical Learning Theory & SVMs
 - Boosting, Decision Trees
- Generative Models (5 weeks)
 - Bayesian Networks
 - Markov Random Fields
- Regression Problems (2 weeks)
 - Gaussian Processes

Recap: Mixture of Gaussians (MoG)

- "Generative model"

\[p(j) = \pi_j \]

\[p(j = 1|x_n) = \frac{\sum_{i=1}^{N} h(j = 1|x_n) x_n}{\sum_{i=1}^{N} h(j = 1|x_n)} \]

\[p(j = 2|x_n) = \frac{\sum_{i=1}^{N} h(j = 2|x_n) x_n}{\sum_{i=1}^{N} h(j = 2|x_n)} \]

Recap: MoG - Iterative Strategy

- Assuming we knew the values of the hidden variable...

\[f(x) \]

ML for Gaussian #1

assumed known

1 1 1

2 2 2

j

ML for Gaussian #2

Recap: MoG - Iterative Strategy

- Assuming we knew the mixture components...

\[f(x) \]

\[p(j = 1|x) \]

\[p(j = 2|x) \]

\[p(j = 1|x_n) > p(j = 2|x_n) \]

Bayes decision rule: Decide \(j = 1 \) if
Recap: K-Means Clustering

- Iterative procedure
 1. Initialization: pick K arbitrary centroids (cluster means)
 2. Assign each sample to the closest centroid.
 3. Adjust the centroids to be the means of the samples assigned to them.
 4. Go to step 2 (until no change)
- Algorithm is guaranteed to converge after finite #iterations.
 - Local optimum
 - Final result depends on initialization.

Topics of This Lecture

- Linear discriminant functions
 - Definition
 - Extension to multiple classes
- Least-squares classification
 - Derivation
 - Shortcomings
- Generalized linear models
 - Connection to neural networks
 - Generalized linear discriminants & gradient descent
- Fisher’s linear discriminant (FLD)
 - Classification as dimensionality reduction
 - Linear discriminant analysis
 - Multiple discriminant analysis
 - Applications

Discriminant Functions

- Formulate classification in terms of comparisons
 - Discriminant functions
 - $y_1(x), \ldots, y_K(x)$
 - Classify x as class C_k if $y_k(x) > y_j(x)$, $\forall j \neq k$
 - Examples (Bayes Decision Theory)
 - $y_k(x) = p(C_k|x)$
 - $y_x(x) = p(x|C_k)p(C_k)$
 - $y_k(x) = \log p(x|C_k) + \log p(C_k)$

Recap: EM Algorithm

- Expectation-Maximization (EM) Algorithm
 - E-Step: softly assign samples to mixture components
 - $\gamma_{j}(x_n) \leftarrow \sum_{k=1}^{K} \frac{p_j(x_n|\mu_k, \Sigma_k)}{p_j(x_n|\mu_k, \Sigma_k)}$
 - $\forall j = 1, \ldots, K$, $n = 1, \ldots, N$
 - M-Step: re-estimate the parameters (separately for each mixture component) based on the soft assignments
 - $\mu_{j}\leftarrow \frac{1}{N_j} \sum_{n=1}^{N} \gamma_j(x_n)x_n$
 - $\Sigma_{j}\leftarrow \frac{1}{N_j} \sum_{n=1}^{N} \gamma_j(x_n)(x_n - \mu_{j})^T(x_n - \mu_{j})$

Discriminant Functions

- Bayesian Decision Theory
 - $p(C_j|x) = \frac{p(x|C_j)p(C_j)}{p(x)}$
 - Model conditional probability densities $p(x|C_j)$ and priors $p(C_j)$
 - Compute posteriors $p(C_j|x)$ (using Bayes’ rule)
 - Minimize probability of misclassification by maximizing $p(C|x)$
 - New approach
 - Directly encode decision boundary
 - Without explicit modeling of probability densities
 - Minimize misclassification probability directly.

- Example: 2 classes
 - $y_1(x) > y_2(x)$
 - $y_1(x) - y_2(x) > 0$
 - $y(x) > 0$
 - Decision functions (from Bayes Decision Theory)
 - $y(x) = p(C_1|x) - p(C_2|x)$
 - $y(x) = \log \frac{p(x|C_1)}{p(x|C_2)} + \log \frac{p(C_1)}{p(C_2)}$
Learning Discriminant Functions

- **General classification problem**
 - Goal: take a new input x and assign it to one of K classes C_k.
 - Given: training set $X = \{x_1, \ldots, x_n\}$ with target values $T = \{t_1, \ldots, t_n\}$.
 - Learn a discriminant function $y(x)$ to perform the classification.

- **2-class problem**
 - Binary target values: $t_n \in \{0, 1\}$

- **K-class problem**
 - 1-of-K coding scheme, e.g. $t_n = (0, 1, 0, 0)^T$

Linear Discriminant Functions

- **Decision boundary $y(x) = 0$ defines a hyperplane**
 - Normal vector: w
 - Offset: $-\frac{w_0}{\|w\|}$

- **2-class problem**
 - $y(x) > 0$: Decide for class C_k, else for class $C_{\neg k}$

- **K-class problem**
 - One-vs-all: Learn K linear discriminant functions $y(x)$
 - One-vs-one: Learn all pair-wise linear discriminant functions $y(x)$

- **Extension to Multiple Classes**
 - Two simple strategies
 - One-vs-all classifiers
 - One-vs-one classifiers

- **Problem**
 - Both strategies result in regions for which the pure classification result ($y_i > 0$) is ambiguous.
 - In the one-vs-all case, it is still possible to classify those inputs based on the continuous classifier outputs $y_i > y_j \iff j \neq k$.

- **Solution**
 - We can avoid those difficulties by taking K linear functions of the form $y_k(x) = w_k^T x + w_{k0}$ and defining the decision boundaries directly by deciding for C_k if $y_k > y_j \forall j \neq k$.
 - This results in the decision hyperplanes:
 $$(w_i^T x + w_{i0}) - (w_j^T x + w_{j0}) = 0$$
Extension to Multiple Classes

- K-class discriminant
 - Combination of K linear functions
 \[y_k(x) = w_k^T x + w_{k0} \]
 - Resulting decision hyperplanes:
 \[(w_k - w_j)^T x + (w_{k0} - w_{j0}) = 0 \]
 - It can be shown that the decision regions of such a discriminant are always singularly connected and convex.
 - This makes linear discriminant models particularly suitable for problems for which the conditional densities \(y(x|w_k) \) are unimodal.

Topics of This Lecture

- Linear discriminant functions
 - Definition
 - Extension to multiple classes
- Least-squares classification
 - Derivation
 - Shortcomings
- Generalized linear models
 - Connection to neural networks
 - Generalized linear discriminants & gradient descent
- Fisher’s linear discriminant (FLD)
 - Classification as dimensionality reduction
 - Linear discriminant analysis
 - Multiple discriminant analysis
 - Applications

General Classification Problem

- Classification problem
 - Let’s consider K classes described by linear models
 \[y_k(x) = w_k^T x + w_{k0}, \quad k = 1, \ldots, K \]
 - We can group those together using vector notation
 \[\hat{y}(x) = \hat{W}^T \hat{x} \]
 \[\hat{W} = [\hat{w}_1, \ldots, \hat{w}_K] = \begin{bmatrix} w_{10} & \cdots & w_{1K} \\ w_{21} & \cdots & w_{2K} \\ \vdots & \ddots & \vdots \\ w_{D1} & \cdots & w_{DK} \end{bmatrix} \]
 - The output will again be in 1-of-K notation.
 - We can directly compare it to the target value \(t = [t_1, \ldots, t_k]^T \).

Least-Squares Classification

- Simplest approach
 - Directly try to minimize the sum-of-squares error
 \[E_D(\hat{W}) = \frac{1}{2} \text{Tr} \left\{ (\hat{X}\hat{W} - T)^T (\hat{X}\hat{W} - T) \right\} \]
 - Taking the derivative yields
 \[\frac{\partial}{\partial \hat{W}} E_D(\hat{W}) = \frac{1}{2} \text{Tr} \left\{ (\hat{X}\hat{W} - T)^T (\hat{X}\hat{W} - T) \right\} \]
 \[= \frac{1}{2} \frac{\partial}{\partial \hat{W}} \text{Tr} \left\{ (\hat{X}\hat{W} - T)^T (\hat{X}\hat{W} - T) \right\} \]
 \[= \frac{\partial}{\partial \hat{W}} \text{Tr} \left\{ \hat{X}^T (\hat{X} \hat{W} - T) \right\} \]
 \[= \hat{X}^T (\hat{X} \hat{W} - T) \]
 - Chain rule: \[\frac{\partial}{\partial Z} \frac{\partial}{\partial Y} \frac{\partial}{\partial X} = \frac{\partial}{\partial Y} \frac{\partial}{\partial X} \]
 - Using:
 \[\frac{\partial}{\partial A} \text{Tr} \{ A \} = I \]
 - We then obtain the discriminant function as
 \[y(x) = \hat{W}^T \hat{x} = \hat{T}^T (\hat{X}^T)^{-1} \hat{X}^T \hat{x} \]
 - Exact, closed-form solution for the discriminant function parameters.
Problems with Least Squares

- Least-squares is very sensitive to outliers!
 - The error function penalizes predictions that are “too correct”.

Another example:
- 3 classes (red, green, blue)
- Linearly separable problem
- Least-squares solution:
 Most green points are misclassified!

Deeper reason for the failure
- Least-squares corresponds to Maximum Likelihood under the assumption of a Gaussian conditional distribution.
- However, our binary target vectors have a distribution that is clearly non-Gaussian!
⇒ Least-squares is the wrong probabilistic tool in this case!

Topics of This Lecture
- Linear discriminant functions
 - Definition
 - Extension to multiple classes
- Least-squares classification
 - Derivation
 - Shortcomings
- Generalized linear models
 - Connection to neural networks
 - Generalized linear discriminants & gradient descent
- Fisher's linear discriminant (F.L.D)
 - Classification as dimensionality reduction
 - Linear discriminant analysis
 - Multiple discriminant analysis
 - Applications

Generalized Linear Models
- Linear model
 \[y(x) = w^T x + w_0 \]
- Generalized linear model
 \[y(x) = g(w^T x + w_0) \]
 - \(g(\cdot) \) is called an activation function and may be nonlinear.
 - The decision surfaces correspond to
 \[y(x) = \text{const.} \] \(\iff \) \(w^T x + w_0 = \text{const.} \)
 - If \(g \) is monotonous (which is typically the case), the resulting decision boundaries are still linear functions of \(x \).

Generalized Linear Models
- Consider 2 classes:
 \[
 p(C_1|x) = \frac{p(x|C_1)p(C_1)}{p(x|C_1)p(C_1) + p(x|C_2)p(C_2)}
 = \frac{1}{1 + \frac{p(x|C_2)p(C_2)}{p(x|C_1)p(C_1)}}
 = \frac{1}{1 + \exp(-a)} \equiv g(a)
 \]
 with \(a = \ln \frac{p(x|C_1)p(C_1)}{p(x|C_2)p(C_2)} \)

Logistic Sigmoid Activation Function
- Example: Normal distributions with identical covariance
- \[g(a) = \frac{1}{1 + \exp(-a)} \]
- \[p(x|a) \] and \[p(x|b) \]
- \[p(a|x) \] and \[p(b|x) \]
Normalized Exponential
- General case of $K \geq 2$ classes:
 \[
p(C_k | x) = \frac{p(x | C_k)p(C_k)}{\sum_j p(x | C_j)p(C_j)} = \frac{\exp(a_k)}{\sum_j \exp(a_j)}
\]
 with $a_k = \ln p(x | C_k)p(C_k)$
 - This is known as the normalized exponential or softmax function.
 - Can be regarded as a multiclass generalization of the logistic sigmoid.

Relationship to Neural Networks
- 2-Class case
 \[
y(x) = \sum_{i=0}^{D} g(w_i x_i) \text{ with } x_0 = 1 \text{ constant}
\]
- Multi-class perceptron
 \[
y_k(x) = \sum_{i=0}^{D} g(w_i x_i) \text{ with } x_0 = 1 \text{ constant}
\]
- Multi-class perceptron
 \[
y_k(x) = \sum_{i=0}^{D} g(w_i x_i)
\]
 - can be used to limit the effect of outliers.

Other Motivation for Nonlinearity
- Recall least-squares classification
 - One of the problems was that data points that are “too correct” have a strong influence on the decision surface under a squared-error criterion.
 \[
 E(w) = \sum_{n=1}^{N} (y(x_n; w) - t_n)^2
 \]
 - Reason: the output of $y(x_n; w)$ can grow arbitrarily large for some x_n.
 - By choosing a suitable nonlinearity (e.g. a sigmoid), we can limit those influences
 \[
y(x; w) = g(w^T x + w_0)
 \]

Discussion: Generalized Linear Models
- Advantages
 - The nonlinearity gives us more flexibility.
 - Can be used to limit the effect of outliers.
 - Choice of a sigmoid leads to a nice probabilistic interpretation.
- Disadvantage
 - Least-squares minimization in general no longer leads to a closed-form analytical solution.
 - Need to apply iterative methods.
 - Gradient descent.
Linear Separability
- Up to now: restrictive assumption
 - Only consider linear decision boundaries
- Classical counterexample: XOR

\[
x_2
\begin{cases}
 \bullet C_2 & \text{if } x_1 < 0 \\
 \bullet C_1 & \text{if } x_1 \geq 0
\end{cases}
\]

Gradient Descent
- Learning the weights \(w \):
 - \(N \) training data points: \(X = \{ x_1, \ldots, x_N \} \)
 - \(K \) outputs of decision functions: \(y_k(x,w) \)
 - Target vector for each data point: \(T = \{ t_1, \ldots, t_N \} \)
 - Error function (least-squares error) of linear model
 \[
 E(w) = \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} \left(y_k(x_n,w) - t_{kn} \right)^2
 \]
 \[
 = \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} \left(\sum_{j=1}^{M} w_{kj} \phi_j(x_n) - t_{kn} \right)^2
 \]

Linear Separability
- Even if the data is not linearly separable, a linear decision boundary may still be “optimal”.
 - Generalization
 - E.g. in the case of Normal distributed data (with equal covariance matrices)
 - Choice of the right discriminant function is important and should be based on
 - Prior knowledge (of the general functional form)
 - Empirical comparison of alternative models
 - Linear discriminants are often used as benchmark.

Generalized Linear Discriminants
- Generalization
 - Transform vector \(x \) with \(M \) nonlinear basis functions \(\phi_j(x) \):
 \[
 y_k(x) = \sum_{j=1}^{M} w_{kj} \phi_j(x) + w_{k0}
 \]
 - Purpose of \(\phi_j(x) \): basis functions
 - Allow non-linear decision boundaries.
 - By choosing the right \(\phi_j \), every continuous function can (in principle) be approximated with arbitrary accuracy.
- Notation
 \[
 y_k(x) = \sum_{j=0}^{M} w_{kj} \phi_j(x) \quad \text{with } \phi_0(x) = 1
 \]

Generalized Linear Discriminants
- Model
 \[
 y_k(x) = \sum_{j=0}^{M} w_{kj} \phi_j(x) = y_k(x;w)
 \]
 - \(K \) functions (outputs) \(y_k(x;w) \)
- Learning in Neural Networks
 - Single-layer networks: \(\phi_j \) are fixed, only weights \(w \) are learned.
 - Multi-layer networks: both the \(w \) and the \(\phi_j \) are learned.
- In the following, we will not go into details about neural networks in particular, but consider generalized linear discriminants in general...

Gradient Descent
- Problem
 - The error function can in general no longer be minimized in closed form.
- Idea (Gradient Descent)
 - Iterative minimization
 - Start with an initial guess for the parameter values \(w_k^{(0)} \).
 - Move towards a (local) minimum by following the gradient.
 \[
 w_{k}^{(r+1)} = w_{k}^{(r)} - \eta \frac{\partial E(w)}{\partial w_k} \bigg|_{w(r)}
 \]
 \(\eta \): Learning rate
 - This simple scheme corresponds to a 1st-order Taylor expansion (There are more complex procedures available).
Perceptual and Sensory Augmented Computing

Gradient Descent - Basic Strategies

“Batch learning”

\[
W_{kj}^{(r+1)} = W_{kj}^{(r)} - \eta \frac{\partial E(w)}{\partial w_{kj}} \bigg|_{w^{(r)}}
\]

\(\eta\): Learning rate

- Compute the gradient based on all training data:

\[
\frac{\partial E(w)}{\partial w_{kj}}
\]

“Sequential updating”

\[
E(w) = \sum_{n=1}^{N} E_n(w)
\]

\[
E_n(w) = \frac{1}{2} \sum_{k=1}^{K} \left(\sum_{j=1}^{M} w_{kj} \phi_j(x_n) - t_{kn} \right)^2
\]

\[
\frac{\partial E_n(w)}{\partial w_{kj}} = \left(\sum_{j=1}^{M} w_{kj} \phi_j(x_n) - t_{kn} \right) \phi'_j(x_n)
\]

\[
W_{kj}^{(r+1)} = W_{kj}^{(r)} - \eta \frac{\partial E_n(w)}{\partial w_{kj}} \bigg|_{w^{(r)}}
\]

\(\eta\): Learning rate

- Compute the gradient based on a single data point at a time:

\[
\frac{\partial E_n(w)}{\partial w_{kj}}
\]

Summary: Generalized Linear Discriminants

Properties

- General class of decision functions.
- Nonlinearity \(g(\cdot)\) and basis functions \(\phi_j\) allow to address linearly non-separable problems.
- Shown simple sequential learning approach for parameter estimation using gradient descent.
- Better 2nd order gradient descent approaches available (e.g. Newton-Raphson).

Limitations / Caveats

- Flexibility of model is limited by curse of dimensionality
 - \(g(\cdot)\) and \(\phi_j\) often introduce additional parameters.
- Models are either limited to low-dimensional input space or need to share parameters.
- Linearly separable case often leads to overfitting.
- Several possible parameter choices minimize training error.
Topics of This Lecture

- Linear discriminant functions
 - Definition
 - Extension to multiple classes
- Least-squares classification
 - Derivation
 - Shortcomings
- Generalized linear models
 - Connection to neural networks
 - Generalized linear discriminants & gradient descent
- Fisher’s linear discriminant (FLD)
 - Classification as dimensionality reduction
 - Linear discriminant analysis
 - Multiple discriminant analysis
 - Applications

Classification as Dimensionality Reduction

- Classification as dimensionality reduction
 - We can interpret the linear classification model as a projection onto a lower-dimensional space.
 - E.g., take the \(D \)-dimensional input vector \(x \) and project it down to one dimension by applying the function
 \[y = W^T x \]
 - If we now place a threshold at \(y \geq w_0 \), we obtain our standard two-class linear classifier.
 - The classifier will have a lower error the better this projection separates the two classes.

 ⇒ New interpretation of the learning problem
 - Try to find the projection vector \(w \) that maximizes the class separation.

Classification as Dimensionality Reduction

Two questions
- How to measure class separation?
- How to find the best projection (with maximal class separation)?

Fisher’s Linear Discriminant Analysis (FLD)

- Better idea:
 - Find a projection that maximizes the ratio of the between-class variance to the within-class variance:
 \[J(w) = \frac{(m_2 - m_1)^2}{s_1^2 + s_2^2} \]
 with \(s_k^2 = \sum_{a \in C_k} (y_a - m_k)^2 \)
 - Usually, this is written as
 \[J(w) = \frac{w^T S_B w}{w^T S_W w} \]
 - where
 \[S_B = (m_2 - m_1)(m_2 - m_1)^T \]
 between-class scatter matrix
 \[S_W = \frac{1}{2} \sum_{a \in C_1} (x_a - m_1)(x_a - m_1)^T + \frac{1}{2} \sum_{a \in C_2} (x_a - m_2)(x_a - m_2)^T \]
 within-class scatter matrix

- Problems with this approach
 1. This expression can be made arbitrarily large by increasing \(||w|| \).
 2. Need to enforce additional constraint \(||w|| = 1 \).

 Classification function:
 \[y(x) = w^T x + w_0 \]
 \(y(x) \geq 0 \) for Class 1, \(y(x) < 0 \) for Class 2.
Multiple Discriminant Analysis

- Generalization to \(K \) classes
 \[
 J(W) = \frac{|W^T S_B W|}{|W^T S_W W|}
 \]
 where
 \[
 W = [w_1, \ldots, w_K] \quad m = \frac{1}{N} \sum_{n=1}^{N} x_n = \frac{1}{N} \sum_{k=1}^{K} N_k m_k
 \]
 \[
 S_B = \sum_{k=1}^{K} N_k (m_k - m)(m_k - m)^T
 \]
 \[
 S_W = \sum_{k=1}^{K} \sum_{n \in C_k} (x_n - m_k)(x_n - m_k)^T
 \]

Maximizing \(J(W) \)

- Generalized eigenvalue problem
 \[
 J(W) = \frac{W^T S_B W}{W^T S_W W}
 \]
 - The columns of the optimal \(W \) are the eigenvectors corresponding to the largest eigenvalues of
 \[
 S_B W_i = \lambda_i S_W W_i
 \]
 - Defining \(v = S_B^T W \), we get
 \[
 S_B^T S_B^{-1} S_B^T v = \lambda v
 \]
 which is a regular eigenvalue problem.
 - Solve for eigenvectors of \(v \), then from that of \(w \).
- For the \(K \)-class case we obtain (at most) \(K \) projections.
 - (i.e. eigenvectors corresponding to non-zero eigenvalues.)

What Does It Mean?

- What does it mean to apply a linear classifier?
 \[
 y(x) = W^T x
 \]
 - Weight vector
 - Input vector
- Classifier interpretation
 - The weight vector has the same dimensionality as \(x \).
 - Positive contributions where \(\text{sign}(x) = \text{sign}(w) \).
 - The weight vector identifies which input dimensions are important for positive or negative classification (large \(|w_i| \)) and which ones are irrelevant (near-zero \(w_i \)).
 - If the inputs \(x \) are normalized, we can interpret \(w \) as a "template" vector that the classifier tries to match.
 \[
 w^T x = \|w\| \|x\| \cos \theta
 \]

Example Application: Fisherfaces

- Visual discrimination task
 - Training data:
 - \(C_1 \): Subjects with glasses
 - \(C_2 \): Subjects without glasses
 - Test:
 - \(\text{glasses?} \)
 - Take each image as a vector of pixel values and apply FLD...

Fisherfaces: Interpretability

- Resulting weight vector for "Glasses/NoGlasses"

Summary: Fisher’s Linear Discriminant

- Properties
 - Simple method for dimensionality reduction, preserves class discriminability.
 - Can use parametric methods in reduced-dim. space that might not be feasible in original higher-dim. space.
 - Widely used in practical applications.

- Restrictions / Caveats
 - Not possible to get more than \(K \)-1 projections.
 - FLD reduces the computation to class means and covariances.
 - Implicit assumption that class distributions are unimodal and well-approximated by a Gaussian/hyperellipsoid.
 - Assumption that \(N > D \) (more training examples than dims.)
 - This may not be given in some domains (e.g. vision)
 - Solution: apply PCA first to get problem with \(D = N \)-1 dimensions.
References and Further Reading

- More information on Linear Discriminant Functions can be found in Chapter 4 of Bishop’s book (in particular Chapter 4.1).

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006