Talk Announcement

Volker Blanz (University of Siegen) 11.05., 14:00h, 6317

3D Gesichtsanimation mit einem Morphable Model

Der Vortrag präsentiert die Grundlagen von Morphable Models, die Animation von Mund- und Augenbewegungen sowie die Simulation des Wachstums von Kindergesichtern.

Announcements

- Exercise 2 available on L2P
 - Risk
 - VC dimension
 - Linear classifiers
 - Fisher’s Linear Discriminant
 - SVMs
 ⇒ Submit your results until next Tuesday evening.

Course Outline

- Fundamentals (2 weeks)
 - Bayes Decision Theory
 - Probability Density Estimation
- Discriminative Approaches (5 weeks)
 - Linear Discriminant Functions
 - Statistical Learning Theory
 - Support Vector Machines
 - Boosting, Decision Trees
- Generative Models (5 weeks)
 - Bayesian Networks
 - Markov Random Fields
- Regression Problems (2 weeks)
 - Gaussian Processes

Recap: Generalization and Overfitting

- Goal: predict class labels of new observations
 - Train classification model on limited training set.
 - The further we optimize the model parameters, the more the training error will decrease.
 - However, at some point the test error will go up again.
 ⇒ Overfitting to the training set!

Recap: Risk

- Empirical risk
 - Measured on the training/validation set
 \[R_{\text{emp}}(\alpha) = \frac{1}{N} \sum_{i=1}^{N} L(y_i, f(x_i; \alpha)) \]
- Actual risk = Expected risk
 - expectation of the error on all data.
 \[R(\alpha) = \int L(y, f(x; \alpha)) dP_{X,Y}(x, y) \]
 \[P_{X,Y}(x, y) \] is the probability distribution of \((x, y)\).
 It is fixed, but typically unknown.
 ⇒ In general, we can’t compute the actual risk directly!
Recap: Statistical Learning Theory

- Idea
 - Compute an upper bound on the actual risk based on the empirical risk
 \[R(\alpha) \leq R_{\text{emp}}(\alpha) + \epsilon(N, p^*, h) \]
 - where
 \(N \): number of training examples
 \(p^* \): probability that the bound is correct
 \(h \): capacity of the learning machine ("VC-dimension")

Recap: VC Dimension

- Vapnik-Chervonenkis dimension
 - Measure for the capacity of a learning machine.

- Formal definition:
 - If a given set of \(f \) points can be labeled in all possible \(2^f \) ways, and for each labeling, a member of the set \(\{f(\alpha)\} \) can be found which correctly assigns those labels, we say that the set of points is shattered by the set of functions.
 - The VC dimension for the set of functions \(\{f(\alpha)\} \) is defined as the maximum number of training points that can be shattered by \(\{f(\alpha)\} \).

Recap: Upper Bound on the Risk

- Important result (Vapnik 1979, 1995)
 - With probability \((1-\eta)\), the following bound holds
 \[R(\alpha) \leq R_{\text{emp}}(\alpha) + \epsilon(N, p^*, h) \]
 - This bound is independent of \(P_{X,Y}(x,y) \! \!\! \)!
 - If we know \(h \) (the VC dimension), we can easily compute the risk bound
 \[R(\alpha) \leq R_{\text{emp}}(\alpha) + \epsilon(N, p^*, h) \]

Recap: Structural Risk Minimization

- How can we implement Structural Risk Minimization?
 - \(R(\alpha) \leq R_{\text{emp}}(\alpha) + \epsilon(N, p^*, h) \)

- Classic approach
 - Keep \(\epsilon(N, p^*, h) \) constant and minimize \(R_{\text{emp}}(\alpha) \).

- Support Vector Machines (SVMs)
 - Keep \(R_{\text{emp}}(\alpha) \) constant and minimize \(\epsilon(N, p^*, h) \).
 - In fact: \(R_{\text{emp}}(\alpha) = 0 \) for separable data.
 - Control \(\epsilon(N, p^*, h) \) by adapting the VC dimension (controlling the “capacity” of the classifier).

Topics of This Lecture

- Linear Support Vector Machines (Recap)
 - Lagrangian (primal) formulation
 - Dual formulation
 - Discussion
- Linearly non-separable case
 - Soft-margin classification
 - Updated formulation
- Nonlinear Support Vector Machines
 - Nonlinear basis functions
 - The Kernel trick
 - Mercer’s condition
 - Popular kernels
- Applications

Recap: Support Vector Machine (SVM)

- Basic idea
 - The SVM tries to find a classifier which maximizes the margin between pos. and neg. data points.
 - Up to now: consider linear classifiers
 \[w^T x + b = 0 \]

- Formulation as a convex optimization problem
 - Find the hyperplane satisfying
 \[\arg \min_{w^T} \frac{1}{2} \|w\|^2 \]
 - under the constraints
 \[t_n (w^T x_n + b) \geq 1 \quad \forall n \]
 - based on training data points \(x_n \) and target values \(t_n \in \{-1, 1\} \).
Recap: SVM - Primal Formulation

- Lagrangian primal form
 \[L_p = \frac{1}{2} ||w||^2 - \sum_{n=1}^{N} a_n \{ t_n (w^T x_n + b) - 1 \} \]
 \[= \frac{1}{2} ||w||^2 - \sum_{n=1}^{N} a_n \{ t_n y_n - 1 \} \]
- The solution of \(L_p \) needs to fulfill the KKT conditions
 - Necessary and sufficient conditions
 \[a_n \geq 0 \]
 \[t_n y_n - 1 \geq 0 \]
 \[a_n \{ t_n y_n - 1 \} = 0 \]
 - Graphical interpretation:
 - The support vectors are the points on the margin.
 - They define the margin and thus the hyperplane.
 - All other data points can be discarded!

Recap: SVM - Solution

- Solution for the hyperplane
 - Computed as a linear combination of the training examples
 \[w = \sum_{n=1}^{N} a_n t_n x_n \]
 - Sparse solution: \(a_n \neq 0 \) only for some points, the support vectors
 - Only the SVs actually influence the decision boundary!
 - Compute \(b \) by averaging over all support vectors:
 \[b = \frac{1}{N_S} \sum_{n \in S} \left(t_n - \sum_{m \in S} a_m t_m x_n^T x_m \right) \]

Recap: SVM - Dual Formulation

- Maximize
 \[L_d(a) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m x_n^T x_m \]
 under the conditions
 \[a_n \geq 0 \quad \forall n \]
 \[\sum_{n=1}^{N} a_n t_n = 0 \]
- Comparison
 - \(L_d \) is equivalent to the primal form \(L_p \), but only depends on \(a_n \).
 - \(L_d \) scales with \(O(D) \).
 - \(L_d \) scales with \(O(N^2) \) - in practice between \(O(N) \) and \(O(N^2) \).

Topics of This Lecture

- Linear Support Vector Machines (Recap)
 - Lagrangian (primal) formulation
 - Dual formulation
 - Discussion
- Linearly non-separable case
 - Soft-margin classification
 - Updated formulation
- Nonlinear Support Vector Machines
 - Nonlinear basis functions
 - The kernel trick
 - Mercer’s condition
 - Popular kernels
- Applications

So Far...

- Only looked at linearly separable case...
 - Current problem formulation has no solution if the data are not linearly separable!
 - Need to introduce some tolerance to outlier data points.
SVM - Non-Separable Data

- Non-separable data
 - I.e. the following inequalities cannot be satisfied for all data points
 \[w^T x_n + b \geq 1 \quad \text{for} \quad t_n = +1 \]
 \[w^T x_n + b \leq -1 \quad \text{for} \quad t_n = -1 \]
 - Instead use
 \[w^T x_n + b \geq 1 - \xi_n \quad \text{for} \quad t_n = +1 \]
 \[w^T x_n + b \leq -1 + \xi_n \quad \text{for} \quad t_n = -1 \]
 - with “slack variables” \(\xi_n \geq 0 \quad \forall n \)

- Separable data
 - Minimize
 \[\frac{1}{2} \|w\|^2 \]
 - Non-separable data
 - Minimize
 \[\frac{1}{2} \|w\|^2 + C \sum_{n=1}^{N} \xi_n \]

 Tradeoff parameter!

SVM - Soft-Margin Classification

- Slack variables
 - One slack variable \(\xi_n \geq 0 \) for each training data point.
- Interpretation
 - \(\xi_n = 0 \) for points that are on the correct side of the margin.
 - \(\xi_n = 1 - y_i(x_i) \) for all other points.
 - We do not have to set the slack variables ourselves!
 ⇒ They are jointly optimized together with \(w \).

Point on decision boundary: \(\xi_n = 1 \)
Misclassified point: \(\xi_n > 1 \)

SVM - New Primal Formulation

- New SVM Primal: Optimize
 \[L_p = \frac{1}{2} \|w\|^2 + C \sum_{n=1}^{N} \xi_n - \sum_{n=1}^{N} a_n (t_n y_i(x_i) - 1) - \sum_{n=1}^{N} \mu_n \xi_n \]
 \[\text{Constraint} \quad t_n y_i(x_i) \geq 1 - \xi_n \]
 \[\xi_n \geq 0 \]
- KKT conditions
 \[a_n \geq 0 \]
 \[\mu_n \geq 0 \]
 \[\xi_n \geq 0 \]
 \[f(x) \geq 0 \]
 \[a_n (t_n y_i(x_i) - 1 + \xi_n) = 0 \]
 \[\mu_n \xi_n = 0 \]
 \[A f(x) = 0 \]

SVM - New Dual Formulation

- New SVM Dual: Maximize
 \[L_d(a) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m (x_n^T x_m) \]
 under the conditions
 \[0 \leq a_n \leq C \]
 \[\sum_{n=1}^{N} a_n t_n = 0 \]

 This is all that changed!

- This is again a quadratic programming problem
 ⇒ Solve as before... (more on that later)

SVM - New Solution

- Solution for the hyperplane
 - Computed as a linear combination of the training examples
 \[w = \sum_{n=1}^{N} a_n t_n x_n \]
 - Again sparse solution: \(a_n = 0 \) for points outside the margin.
 - The slack points with \(\xi_n > 0 \) are now also support vectors!
 - Compute \(b \) by averaging over all \(N_s \) points with \(0 < a_n < C \):
 \[b = \frac{1}{N_s} \sum_{n \in S} \left(t_n - \sum_{m \in M} a_m t_m x_n^T x_m \right) \]
Interpretation of Support Vectors

- Those are the hard examples!
 - We can visualize them, e.g., for face detection

Topics of This Lecture

- Linear Support Vector Machines (Recap)
 - Lagrangian (primal) formulation
 - Dual formulation
 - Discussion
- Linearly non-separable case
 - Soft-margin classification
 - Updated formulation
- Nonlinear Support Vector Machines
 - Nonlinear basis functions
 - The Kernel trick
 - Mercer’s condition
 - Popular kernels
 - Applications

So Far...

- Only looked at linearly separable case...
 - Current problem formulation has no solution if the data are not linearly separable!
 - Need to introduce some tolerance to outlier data points
 - Slack variables.
- Only looked at linear decision boundaries...
 - This is not sufficient for many applications.
 - Want to generalize the ideas to non-linear boundaries.

Nonlinear SVM

- Linear SVMs
 - Datasets that are linearly separable with some noise work well:
 - But what are we going to do if the dataset is just too hard?
- How about... mapping data to a higher-dimensional space:

Another Example

- Non-separable by a hyperplane in 2D

Another Example

- Separable by a surface in 3D
Nonlinear SVM - Feature Spaces

- General idea: The original input space can be mapped to some higher-dimensional feature space where the training set is separable:

\[\phi: \mathbb{R}^D \rightarrow \phi(\mathbb{R}^D) \]

\[\phi(x) = \begin{bmatrix} x_1^2 \\ x_2^2 \end{bmatrix} \]

\[\phi(x) \] only appears in the form of dot products \(\phi(x)^T \phi(y) \):

\[y(x) = w^T \phi(x) + b = \sum_{n=1}^{N} a_n t_n \phi(x_n)^T \phi(x) + b \]

Define a so-called kernel function \(k(x,y) = \phi(x)^T \phi(y) \).

Now, in place of the dot product, use the kernel instead:

\[y(x) = \sum_{n=1}^{N} a_n t_n k(x_n, x) + b \]

The kernel function implicitly maps the data to the higher-dimensional space (without having to compute \(\phi(x) \) explicitly)!

Nonlinear SVM

- General idea

 - Nonlinear transformation \(\phi \) of the data points \(x \):

 \[x \in \mathbb{R}^D \quad \phi: \mathbb{R}^D \rightarrow \mathcal{H} \]

 - Hyperplane in higher-dim. space \(\mathcal{H} \) (linear classifier in \(\mathcal{H} \))

 \[w^T \phi(x) + b = 0 \]

 \(\Rightarrow \) Nonlinear classifier in \(\mathbb{R} \).

Problem with High-dim. Basis Functions

- Problem

 - Motivation: Easier to separate data in higher-dimensional space.

 - But wait - isn’t there a big problem?

 - How should we evaluate the decision function?

 - Oh-oh...

Solution: The Kernel Trick

- Important observation

 - \(\phi(x) \) only appears in the form of dot products \(\phi(x)^T \phi(y) \):

 \[y(x) = w^T \phi(x) + b = \sum_{n=1}^{N} a_n t_n \phi(x_n)^T \phi(x) + b \]

- Define a so-called kernel function \(k(x,y) = \phi(x)^T \phi(y) \).

- Now, in place of the dot product, use the kernel instead:

 \[y(x) = \sum_{n=1}^{N} a_n t_n k(x_n, x) + b \]

- The kernel function implicitly maps the data to the higher-dimensional space (without having to compute \(\phi(x) \) explicitly)!

Back to Our Previous Example...

- 2nd degree polynomial kernel:

 \[\phi(x)^T \phi(y) = \begin{bmatrix} x_1^2 \\ \sqrt{2}x_1x_2 \\ x_2^2 \end{bmatrix} \begin{bmatrix} \sqrt{2}y_1 \\ \sqrt{2}y_1y_2 \\ y_2^2 \end{bmatrix} = x_1^2y_1^2 + 2x_1x_2y_1y_2 + x_2^2y_2^2 = (x^T y)^2 = k(x,y) \]

 - Whenever we evaluate the kernel function \(k(x,y) = (x^T y)^2 \), we implicitly compute the dot product in the higher-dimensional feature space.
SVMs with Kernels

- Using kernels
 - Applying the kernel trick is easy. Just replace every dot product by a kernel function...
 - \[x^T y \rightarrow k(x, y) \]
 - ...and we're done.
 - Instead of the raw input space, we're now working in a higher-dimensional (potentially infinite dimensional) space, where the data is more easily separable.

 “Sounds like magic...”

- Wait - does this always work?
 - The kernel needs to define an implicit mapping to a higher-dimensional feature space \(\phi(x) \).
 - When is this the case?

Which Functions are Valid Kernels?

- Mercer’s theorem (modernized version):
 - Every positive definite symmetric function is a kernel.
- Positive definite symmetric functions correspond to a positive definite symmetric Gram matrix:

 \[
 K = \begin{bmatrix}
 k(x_1, x_1) & k(x_1, x_2) & \cdots & k(x_1, x_N) \\
 k(x_2, x_1) & k(x_2, x_2) & \cdots & k(x_2, x_N) \\
 \vdots & \vdots & \ddots & \vdots \\
 k(x_N, x_1) & k(x_N, x_2) & \cdots & k(x_N, x_N)
 \end{bmatrix}
 \]

Kernels Fulfilling Mercer's Condition

- Polynomial kernel
 \[k(x, y) = (x^T y + 1)^p \]
- Radial Basis Function kernel
 \[k(x, y) = \exp\left(-\frac{(x - y)^2}{2\sigma^2} \right) \]
 e.g. Gaussian
- Hyperbolic tangent kernel
 \[k(x, y) = \tanh(k^T x + \delta) \]
 e.g. Sigmoid

 (and many, many more...)

Nonlinear SVM - Dual Formulation

- SVM Dual: Maximize
 \[L_D(a) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{m=1}^{N} \sum_{n=1}^{N} a_n a_m t_m t_n k(x_m, x_n) \]

 under the conditions
 \[0 \leq a_n \leq C \]

 \[\sum_{n=1}^{N} a_n t_n = 0 \]

- Classify new data points using
 \[y(x) = \sum_{n=1}^{N} a_n t_n k(x_n, x) + b \]

VC Dimension for Polynomial Kernel

- Polynomial kernel of degree \(p \):
 \[k(x, y) = (x^T y)^p \]
 - Dimensionality of \(\mathcal{H} \):
 \[D + p - 1 \]
 \[p \]
 \[\dim(\mathcal{H}) = 183.181.376 \]
 - Example:
 \[D = 16 \times 16 = 256 \]
 \[p = 4 \]
 \[\dim(\mathcal{H}) = 183.181.376 \]
 - The hyperplane in \(\mathcal{H} \) then has VC-dimension
 \[\dim(\mathcal{H}) + 1 \]

VC Dimension for Gaussian RBF Kernel

- Radial Basis Function:
 \[k(x, y) = \exp\left(-\frac{(x - y)^2}{2\sigma^2} \right) \]
 - In this case, \(\mathcal{H} \) is infinite dimensional!
 - \[\exp(x) = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \cdots + \frac{x^n}{n!} + \ldots \]
 - Since only the kernel function is used by the SVM, this is no problem.
 - The hyperplane in \(\mathcal{H} \) then has VC-dimension
 \[\dim(\mathcal{H}) + 1 = \infty \]
VC Dimension for Gaussian RBF Kernel

- Intuitively
 - If we make the radius of the RBF kernel sufficiently small, then each data point can be associated with its own kernel.
 - However, this also means that we can get finite VC-dimension if we set a lower limit to the RBF radius.

Example: RBF Kernels

- Decision boundary on toy problem

But... but... but...

- Don’t we risk overfitting with those enormously high-dimensional feature spaces?
 - No matter what the basis functions are, there are really only up to \(N \) parameters: \(\alpha_1, \alpha_2, \ldots, \alpha_N \) and most of them are usually set to zero by the maximum margin criterion.
 - The data effectively lives in a low-dimensional subspace of \(\mathbb{H} \).

- What about the VC dimension? I thought low VC-dim was good (in the sense of the risk bound)?
 - Yes, but the maximum margin classifier “magically” solves this.
 - Reason (Vapnik): by maximizing the margin, we can reduce the VC-dimension.
 - Empirically, SVMs have very good generalization performance.

Theoretical Justification for Maximum Margins

- Vapnik has proved the following:
 - The class of optimal linear separators has VC dimension \(h \) bounded from above as
 \[
 h \leq \min \left\lceil \frac{D^2}{\sigma^2} m_0 \right\rceil + 1
 \]
 - where \(\sigma \) is the margin, \(D \) is the diameter of the smallest sphere that can enclose all of the training examples, and \(m_0 \) is the dimensionality.
 - Intuitively, this implies that regardless of dimensionality \(m_0 \) we can minimize the VC dimension by maximizing the margin \(\sigma \).
 - Thus, complexity of the classifier is kept small regardless of dimensionality.

Summary: SVMs

- Properties
 - Empirically, SVMs work very, very well.
 - SVMs are currently among the best performers for a number of classification tasks ranging from text to genomic data.
 - SVMs can be applied to complex data types beyond feature vectors (e.g., graphs, sequences, relational data) by designing kernel functions for such data.
 - SVM techniques have been applied to a variety of other tasks – e.g. SV Regression, One-class SVMs, ...
 - The kernel trick has been used for a wide variety of applications. It can be applied wherever dot products are in use – e.g., Kernel PCA, kernel FLD, ...
 - Good overview, software, and tutorials available on http://www.kernel-machines.org/
Summary: SVMs

- Limitations
 - How to select the right kernel?
 - Still something of a black art...
 - How to select the kernel parameters?
 - (Massive) cross-validation.
 - Usually, several parameters are optimized together in a grid search.
 - Solving the quadratic programming problem
 - Standard QP solvers do not perform too well on SVM task.
 - Dedicated methods have been developed for this, e.g. SMO.
 - Speed of evaluation
 - Evaluating \(y(x) \) scales linearly in the number of SVs.
 - Too expensive if we have a large number of support vectors.
 - ⇒ There are techniques to reduce the effective SV set.
 - Training for very large datasets (millions of data points)
 - Still problematic...

- How to select the right kernel?
 - Still something of a black art...

- How to select the kernel parameters?
 - (Massive) cross-validation.
 - Usually, several parameters are optimized together in a grid search.
 - Standard QP solvers do not perform too well on SVM task.
 - Dedicated methods have been developed for this, e.g. SMO.
 - Speed of evaluation
 - Evaluating \(y(x) \) scales linearly in the number of SVs.
 - Too expensive if we have a large number of support vectors.
 - ⇒ There are techniques to reduce the effective SV set.
 - Training for very large datasets (millions of data points)
 - Still problematic...

Topics of This Lecture

- Linear Support Vector Machines (Recap)
 - Lagrangian (primal) formulation
 - Dual formulation
 - Discussion

- Linearly non-separable case
 - Soft-margin classification
 - Updated formulation

- Nonlinear Support Vector Machines
 - Nonlinear basis functions
 - The kernel trick
 - Averon’s condition
 - Popular kernels

- Applications

Example Application: Text Classification

- Problem:
 - Classify a document in a number of categories

- Representation:
 - “Bag-of-words” approach
 - Histogram of word counts (on learned dictionary)
 - Very high-dimensional feature space (~10,000 dimensions)
 - Few irrelevant features

- This was one of the first applications of SVMs
 - T. Joachims (1997)

- Results:

Example Application: OCR

- Handwritten digit recognition
 - US Postal Service Database
 - Standard benchmark task for many learning algorithms
Example Application: OCR

- Results
 - Almost no overfitting with higher-degree kernels.

<table>
<thead>
<tr>
<th>degree of polynomial</th>
<th>dimensionality of feature space</th>
<th>support vectors</th>
<th>raw error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>256</td>
<td>282</td>
<td>8.9</td>
</tr>
<tr>
<td>2</td>
<td>≈ 3,000</td>
<td>217</td>
<td>4.7</td>
</tr>
<tr>
<td>3</td>
<td>≈ 1 x 10^6</td>
<td>274</td>
<td>4.0</td>
</tr>
<tr>
<td>4</td>
<td>≈ 1 x 10^9</td>
<td>321</td>
<td>4.2</td>
</tr>
<tr>
<td>5</td>
<td>≈ 1 x 10^12</td>
<td>374</td>
<td>4.3</td>
</tr>
<tr>
<td>6</td>
<td>≈ 1 x 10^14</td>
<td>377</td>
<td>4.5</td>
</tr>
<tr>
<td>7</td>
<td>≈ 1 x 10^16</td>
<td>422</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Example Application: Pedestrian Detection

- Sliding-window approach
 - E.g. histogram representation (HOG)
 - Map each grid cell in the input window to a histogram of gradient orientations.
 - Train a linear SVM using training set of pedestrian vs. non-pedestrian windows.

Many Other Applications

- Lots of other applications in all fields of technology
 - OCR
 - Text classification
 - Computer vision
 - ...
 - High-energy physics
 - Monitoring of household appliances
 - Protein secondary structure prediction
 - Design on decision feedback equalizers (DFE) in telephony

(Detailed references in Schölkopf & Smola, 2002, pp. 221)

You Can Try It At Home...

- Lots of SVM software available, e.g.
 - svmlight (http://svmlight.joachims.org/)
 - Command-line based interface
 - Source code available (in C)
 - Interfaces to Python, MATLAB, Perl, Java, DLL,...
 - libsvm (http://www.csie.ntu.edu.tw/~cjlin/libsvm/)
 - Library for inclusion with own code
 - C++ and Java sources
 - Interfaces to Python, R, MATLAB, Perl, Ruby, Weka, C++,NET,...
 - Both include fast training and evaluation algorithms, support for multi-class SVMs, automated training and cross-validation, ...
 - Easy to apply to your own problems!

References and Further Reading

- More information on SVMs can be found in Chapter 7.1 of Bishop’s book. You can also look at Schölkopf & Smola (some chapters available online).
 - A more in-depth introduction to SVMs is available in the following tutorial:
 - B. Schölkopf, A. Smola Learning with Kernels MIT Press, 2002
 - S. Boyd, S. Vandenbeuc, and A. C. Parker, Convex Optimization: A Tutorial
 - Available online: http://www.convexoptimization.com/