Recap: Boosting (Schapire 1989)

- Algorithm: (3-component classifier)
 1. Sample $N_1 < N$ training examples (without replacement) from training set \mathcal{D} to get set \mathcal{D}_1.
 2. Sample $N_2 < N$ training examples (without replacement), half of which were misclassified by C_1, to get set \mathcal{D}_2.
 3. Choose all data in \mathcal{D} on which C_1 and C_2 disagree to get set \mathcal{D}_3.
 4. Get the final classifier output by majority voting of C_1, C_2, and C_3.

Recap: Bayesian Model Averaging

- Model Averaging
 - Suppose we have H different models $h = 1, \ldots, H$ with prior probabilities $p(h)$.
 - Construct the marginal distribution over the data set

 $p(X) = \sum_{h=1}^{H} p(X|h)p(h)$
 - Average error of committee

 $\overline{E}_{COM} = \frac{1}{M} \overline{E}_{AV}$

- This suggests that the average error of a model can be reduced by a factor of M simply by averaging M versions of the model!
- Unfortunately, this assumes that the errors are all uncorrelated. In practice, they will typically be highly correlated.

Course Outline

- Fundamentals (2 weeks)
 - Bayes Decision Theory
 - Probability Density Estimation
- Discriminative Approaches (5 weeks)
 - Linear Discriminant Functions
 - Statistical Learning Theory
 - Support Vector Machines
 - Boosting, Decision Trees
- Generative Models (5 weeks)
 - Bayesian Networks
 - Markov Random Fields
- Regression Problems (2 weeks)
 - Gaussian Processes

Recap: Stacking

- Idea
 - Learn L classifiers (based on the training data)
 - Find a meta-classifier that takes as input the output of the L first-level classifiers.
- Example
 - Learn L classifiers with leave-one-out.
 - Interpret the prediction of the L classifiers as L-dimensional feature vector.
 - Learn "level-2" classifier based on the examples generated this way.

- Why can this be useful?
 - Simplicity
 - We may already have several existing classifiers available.
 - No need to retrain those, they can just be combined with the rest.
 - Correlation between classifiers
 - The combination classifier can learn the correlation.
 - Better results than simple naive Bayes combination.
 - Feature combination
 - E.g. combine information from different sensors or sources (vision, audio, acceleration, temperature, radar, etc.).
 - We can get good training data for each sensor individually, but data from all sensors together is rare.
 - Train each of the L classifiers on its own input data.
 - Only combination classifier needs to be trained on combined input.
Recap: AdaBoost - “Adaptive Boosting”

- **Main idea** [Freund & Schapire, 1996]
 - Instead of resampling, reweight misclassified training examples.
 - Increase the chance of being selected in a sampled training set.
 - Or increase the misclassification cost when training on the full set.

- **Components**
 - $h_m(x)$: “weak” or base classifier
 - Condition: <50% training error over any distribution
 - $H(x)$: “strong” or final classifier

- **AdaBoost:**
 - Construct a strong classifier as a thresholded linear combination of the weighted weak classifiers:
 $$ H(x) = \text{sign} \left(\sum_{m=1}^{M} \alpha_m h_m(x) \right) $$

Recap: AdaBoost – Intuition

Consider a 2D feature space with positive and negative examples.

Each weak classifier splits the training examples with at least 50% accuracy.

Examples misclassified by a previous weak learner are given more emphasis at future rounds.

Recap: AdaBoost – Algorithm

1. Initialization: Set $w_i^{(1)} = \frac{1}{N}$ for $n = 1, \ldots, N$.
2. For $m = 1, \ldots, M$ iterations
 a) Train a new weak classifier $h_m(x)$ using the current weighting coefficients $W^{(m)}$ by minimizing the weighted error function
 $$ J_m = \sum_{n=1}^{N} w_n^{(m)} I(h_m(x) \neq t_n) = \frac{1}{2} \text{ if } A \text{ is true} \quad \text{else}$$
 b) Estimate the weighted error of this classifier on X:
 $$ \epsilon_m = \frac{1}{2} \sum_{n=1}^{N} w_n^{(m)} I(h_m(x) \neq t_n) $$
 c) Calculate a weighting coefficient for $h_m(x)$:
 $$ \alpha_m = \ln \left(\frac{1}{\epsilon_m} \right) $$
 d) Update the weighting coefficients:
 $$ w_i^{(m+1)} = w_i^{(m)} \exp \left\{ \alpha_m I(h_m(x_i) \neq t_i) \right\} $$

Recap: Comparing Error Functions

- Ideal misclassification error function
- “Hinge error” used in SVMs
- Exponential error function
 - Continuous approximation to ideal misclassification function.
 - Sequential minimization leads to simple AdaBoost scheme.
 - Disadvantage: exponential penalty for large negative values!
 - Less robust to outliers or misclassified data points!
Recap: Comparing Error Functions

- Ideal misclassification error function
- “Hinge error” used in SVMs
- Exponential error function
- “Cross-entropy error”
 - Similar to exponential error for $z \geq 0$.
 - Only grows linearly with large negative values of z.
 - Make AdaBoost more robust by switching to “GentleBoost”

Topics of This Lecture

- Decision Trees
 - CART
 - Impurity measures
 - Stopping criterion
 - Pruning
 - Extensions
 - Issues
 - Historical development: ID3, C4.5

- Random Forests
 - Basic idea
 - Bootstrap sampling
 - Randomized attribute selection
 - Applications

Decision Trees

- Very old technique
 - Origin in the 60s, might seem outdated.
- But...
 - Can be used for problems with nominal data
 - E.g. attributes color $\in \{\text{red, green, blue}\}$ or weather $\in \{\text{sunny, rainy}\}$.
 - Discrete values, no notion of similarity or even ordering.
 - Interpretable results
 - Learned trees can be written as sets of if-then rules.
 - Methods developed for handling missing feature values.
 - Successfully applied to broad range of tasks
 - E.g. Medical diagnosis
 - E.g. Credit risk assessment of loan applicants
 - Some interesting novel developments building on top of them...

Decision Trees

- Example:
 - “Classify Saturday mornings according to whether they’re suitable for playing tennis.”

Decision Trees

- Elements
 - Each node specifies a test for some attribute.
 - Each branch corresponds to a possible value of the attribute.

- Assumption
 - Links must be mutually distinct and exhaustive
 - I.e. one and only one link will be followed at each step.

- Interpretability
 - Information in a tree can then be rendered as logical expressions.
 - In our example:
 - $(\text{Outlook} = \text{sunny} \land \text{Humidity} = \text{Normal})$
 - $(\text{Outlook} = \text{Overcast})$
 - $(\text{Outlook} = \text{Rain} \land \text{Wind} = \text{Weak})$
Training Decision Trees

- Finding the optimal decision tree is NP-hard...
- Common procedure: Greedy top-down growing
 - Start at the root node.
 - Progressively split the training data into smaller and smaller subsets.
 - In each step, pick the best attribute to split the data.
 - If the resulting subsets are pure (only one label) or if no further attribute can be found that splits them, terminate the tree.
 - Else, recursively apply the procedure to the subsets.
- CART framework
 - Classification And Regression Trees (Breiman et al. 1993)
 - Formalization of the different design choices.

CART Framework

- Six general questions
 1. Binary or multi-valued problem?
 - I.e. how many splits should there be at each node?
 2. Which property should be tested at a node?
 - I.e. how to select the query attribute?
 3. When should a node be declared a leaf?
 - I.e. when to stop growing the tree?
 4. How can a grown tree be simplified or pruned?
 - Goal: reduce overfitting.
 5. How to deal with impure nodes?
 - I.e. when the data itself is ambiguous.
 6. How should missing attributes be handled?

CART - 1. Number of Splits

- Each multi-valued tree can be converted into an equivalent binary tree:

⇒ Only consider binary trees here...

CART - 2. Picking a Good Splitting Feature

- Goal
 - Want a tree that is as simple/small as possible (Occam’s razor).
 - But: Finding a minimal tree is an NP-hard optimization problem.
- Greedy top-down search
 - Efficient, but not guaranteed to find the smallest tree.
 - Seek a property \(T \) at each node \(N \) that makes the data in the child nodes as pure as possible.
 - For formal reasons more convenient to define impurity \(\text{i}(N) \).
 - Several possible definitions explored.

CART - Impurity Measures

- Misclassification impurity
 \[
 i(N) = 1 - \max_j \frac{|C_j|}{|N|}
 \]
 “Fraction of the training patterns in category \(C_j \) that end up in node \(N \).”

- Entropy impurity
 \[
 i(N) = - \sum_j \frac{|C_j|}{|N|} \log_2 \frac{|C_j|}{|N|}
 \]
 “Reduction in entropy = gain in information.”
CART – Impurity Measures

- Gini impurity (variance impurity)

\[i(N) = \sum_{j} p(C_{j}|N)p(C_{j}|N) \]
\[= \frac{1}{2}(1 - \sum_{j} p^2(C_{j}|N)) \]

"Expected error rate at node N if the category label is selected randomly."

CART – Picking a Good Splitting Feature

- Application
 - Select the query that decreases impurity the most

\[\Delta i(N) = i(N) - P_k i(N_k) - (1 - P_k) i(N_R) \]

- Multiway generalization (gain ratio impurity):
 - Maximize

\[\Delta i(s) = \frac{1}{2} \left(i(N) - \sum_{k=1}^{K} P_k i(N_k) \right) \]

 where the normalization factor ensures that large K are not inherently favored:

\[Z = -\sum_{k=1}^{K} P_k \log_2 P_k \]

CART - 2. Picking a Good Splitting Feature

- For efficiency, splits are often based on a single feature
- "Monothetic decision trees"

CART - 3. When to Stop Splitting

- Problem: Overfitting
 - Learning a tree that classifies the training data perfectly may not lead to the tree with the best generalization to unseen data.
 - Reasons
 - Noise or errors in the training data.
 - Poor decisions towards the leaves of the tree that are based on very little data.

- Typical behavior

\[\text{Accuracy} \]
\[\text{hypothesis complexity} \]

on training data

on test data

CART - Overfitting Prevention (Pruning)

- Two basic approaches for decision trees
 - Prepruning: Stop growing tree as some point during top-down construction when there is no longer sufficient data to make reliable decisions.
 - Postpruning: Grow the full tree, then remove subtrees that do not have sufficient evidence.

- Label leaf resulting from pruning with the majority class of the remaining data, or a class probability distribution.

\[C_N = \arg \max_k p(C_k|N) \]
\[p(C_k|N) \]
CART - Stopping Criterion

- Determining which subtrees to prune:
 - Cross-validation: Reserve some training data as a hold-out set (validation set, tuning set) to evaluate utility of subtrees.
 - Statistical test: Determine if any observed regularity can be dismissed as likely due to random chance.
 - Determine the probability that the outcome of a candidate split could have been generated by a random split.
 - Chi-squared statistic (one degree of freedom)
 \[\chi^2 = \sum_{i=1}^{4} \frac{(\hat{N}_{i, obs} - \hat{N}_{i, corr})^2}{\hat{N}_{i, corr}} \]
 - Compare to critical value at certain confidence level (table lookup).
 - Minimum description length (MDL): Determine if the additional complexity of the hypothesis is less complex than just explicitly remembering any exceptions resulting from pruning.

(Post-)Pruning Strategies

- Common strategies
 - Merging leaf nodes
 - Consider pairs of neighboring leaf nodes.
 - If their elimination results only in small increase in impurity, prune them.
 - Procedure can be extended to replace entire subtrees with leaf node directly.
 - Rule-based pruning
 - Each leaf has an associated rule (conjunction of individual decisions).
 - Full tree can be described by list of rules.
 - Can eliminate irrelevant preconditions to simplify the rules.
 - Can eliminate rules to improve accuracy on validation set.
 - Advantage: can distinguish between the contexts in which the decision rule at a node is used \(\Rightarrow \) can prune them selectively.

Decision Trees - Handling Missing Attributes

- During training
 - Calculate impurities at a node using only the attribute information present.
 - E.g. 3-dimensional data, one point is missing attribute \(x_1 \).
 - Compute possible splits on \(x_1 \) using all \(N \) points.
 - Compute possible splits on \(x_{2} \) using all \(N \) points.
 - Compute possible splits on \(x_{3} \) using \(N-1 \) non-deficient points.
 - Choose split which gives greatest reduction in impurity.

- During test
 - Cannot handle test patterns that are lacking the decision attribute.
 - In addition to primary split, store an ordered set of surrogate splits that try to approximate the desired outcome based on different attributes.

Decision Trees - Feature Choice

- Best results if proper features are used
 - Preprocessing to find important axes often pays off.
Decision Trees - Non-Uniform Cost

- Incorporating category priors
 - Often desired to incorporate different priors for the categories.
 - Solution: weight samples to correct for the prior frequencies.

- Incorporating non-uniform loss
 - Create loss matrix λ_{ij}
 - Loss can easily be incorporated into Gini impurity
 $$ i(N) = \sum_{j} \lambda_{ij} p(C_j) \Delta p(C_j) $$

Historical Development

- C4.5 (Quinlan 1993)
 - Improved version with extended capabilities.
 - Ability to deal with real-valued variables.
 - Multway splits are used with nominal data.
 - Using gain ratio impurity based on entropy (information gain) criterion.
 - Heuristics for pruning based on statistical significance of splits.
 - Rule post-pruning

- Main difference to CART
 - Strategy for handling missing attributes.
 - When missing feature is queried, C4.5 follows all $|I|$ possible answers.
 - Decision is made based on all $|I|$ possible outcomes, weighted by decision probabilities at node N.

Summary: Decision Trees

- Properties
 - Simple learning procedure, fast evaluation.
 - Can be applied to metric, nominal, or mixed data.
 - Often yield interpretable results.

Decision Trees - Computational Complexity

- Given
 - Data points $[x_1, \ldots, x_N]$.
 - Dimensionality D

- Complexity
 - Storage: $O(N)$
 - Test runtime: $O(\lambda N)$
 - Training runtime: $O(DN^2 \log N)$

Summary: Decision Trees

- Limitations
 - Often produce noisy (bushy) or weak (stunted) classifiers.
 - Do not generalize too well.
 - Training data fragmentation:
 - As tree progresses, splits are selected based on less and less data.
 - Overtraining and undertraining:
 - Deep trees: fit the training data well, will not generalize well to new test data.
 - Shallow trees: not sufficiently refined.
 - Stability
 - Trees can be very sensitive to details of the training points.
 - Expensive learning step
 - Mostly due to costly selection of optimal split.
Topics of This Lecture

• Decision Trees
 - CART
 - Impurity measures
 - Stopping criteria
 - Pruning
 - Extensions
 - Issues
 - Historical development: ID3, C4.5
• Random Forests
 - Basic idea
 - Bootstrap sampling
 - Randomized attribute selection
 - Applications

Random Forests (Breiman 2001)

• Ensemble method
 - Idea: Create ensemble of many (very simple) trees.
• Empirically very good results
 - Often as good as SVMs (and sometimes better!)
 - Often as good as Boosting (and sometimes better!)
• Standard decision trees: main effort on finding good split
 - Random Forests use very little effort in this.
 - CART algorithm with Gini coefficient, no pruning.
 - Each split only made based on a random subset of the available attributes.
 - Trees are grown fully (important!).
• Main secret
 - Injecting the “right kind of randomness”.

Random Forests - Algorithmic Goals

• Create many trees (50 - 1,000)
• Inject randomness into trees such that
 - Each tree has maximal strength
 - I.e. a fairly good model on its own
 - Each tree has minimum correlation with the other trees.
 - I.e. the errors tend to cancel out.
• Ensemble of trees votes for final result
 - Simple majority vote for category.
 - Alternative (Friedman)
 - Optimally reweigh the trees via regularized regression (lasso).

Random Forests - Injecting Randomness (1)

• Bootstrap sampling process
 - Select a training set by choosing \(N \) times with replacement from all \(N \) available training examples.
 - On average, each tree is grown on only \(\approx 63\% \) of the original training data.
 - Remaining \(37\% \) “out-of-bag” (OOB) data used for validation.
 - Provides ongoing assessment of model performance.
 - Allows fitting to small data sets without explicitly holding back any data for testing.

Random Forests - Injecting Randomness (2)

• Random attribute selection
 - For each node, randomly choose subset of \(\sqrt{\mathcal{M}} \) attributes on which the split is based (typically square root of number available).
 - Evaluate splits only on OOB data (out-of-bag estimate).
 - Very fast training procedure
 - Need to test few attributes.
 - Evaluate only \(\approx 37\% \) of the data.
 - Minimizes inter-tree dependence
 - Reduce correlation between different trees.
• Each tree is grown to maximal size and is left unpruned
 - Trees are deliberately overfit
 - Become some form of nearest-neighbor predictor.

Big Question

How can this ever possibly work???
Different trees induce different partitions on the data. By combining them, we obtain a finer subdivision of the feature space… which at the same time also better reflects the uncertainty due to the bootstrapped sampling.

Summary: Random Forests

- **Properties**
 - Very simple algorithm.
 - Resistant to overfitting - generalizes well to new data.
 - Very rapid training
 - Also often used for online learning.
 - Extensions available for clustering, distance learning, etc.
- **Limitations**
 - Memory consumption
 - Decision tree construction uses much more memory.
 - Well-suited for problems with little training data
 - Little performance gain when training data is really large.

You Can Try It At Home...

- **Free implementations available**
 - Original RF implementation by Breiman & Cutler
 - http://www.stat.berkeley.edu/users/breiman/RandomForests/
 - Code + documentation
 - In Fortran 77
 - But also newer version available in Fortran 90!
 - Fast Random Forest implementation for Java (Weka)
 - http://code.google.com/p/fast-random-forest/

Applications

- Computer Vision: fast keypoint detection
 - Detect keypoints: small patches in the image used for matching
 - Classify into one of ~200 categories (visual words)

- Extremely simple features
 - E.g. pixel value in a color channel (CIELab)
 - E.g. sum of two points in the patch
 - E.g. difference of two points in the patch
 - E.g. absolute difference of two points

- Create forest of randomized decision trees
 - Each leaf node contains probability distribution over 200 classes
 - Can be updated and re-normalized incrementally

Application: Fast Keypoint Detection

References and Further Reading

- More information on Decision Trees can be found in Chapters 8.2-8.4 of Duda & Hart.

R.O. Duda, P.E. Hart, D.G. Stork
Pattern Classification
2nd Ed., Wiley-InterScience, 2000

- The original paper for Random Forests: