Machine Learning - Lecture 8

Decision Trees & Randomized Trees

19.05.2009

Bastian Leibe
RWTH Aachen
http://www.umic.rwth-aachen.de/multimedia
leibe@umic.rwth-aachen.de
Course Outline

- **Fundamentals (2 weeks)**
 - Bayes Decision Theory
 - Probability Density Estimation

- **Discriminative Approaches (5 weeks)**
 - Linear Discriminant Functions
 - Statistical Learning Theory
 - Support Vector Machines
 - Boosting, Decision Trees

- **Generative Models (5 weeks)**
 - Bayesian Networks
 - Markov Random Fields

- **Regression Problems (2 weeks)**
 - Gaussian Processes
Recap: Stacking

• Idea
 - Learn L classifiers (based on the training data)
 - Find a meta-classifier that takes as input the output of the L first-level classifiers.

• Example
 - Learn L classifiers with leave-one-out.
 - Interpret the prediction of the L classifiers as L-dimensional feature vector.
 - Learn “level-2” classifier based on the examples generated this way.
Recap: Stacking

- Why can this be useful?
 - Simplicity
 - We may already have several existing classifiers available.
 ⇒ No need to retrain those, they can just be combined with the rest.
 - Correlation between classifiers
 - The combination classifier can learn the correlation.
 ⇒ Better results than simple Naïve Bayes combination.
 - Feature combination
 - E.g. combine information from different sensors or sources (vision, audio, acceleration, temperature, radar, etc.).
 - We can get good training data for each sensor individually, but data from all sensors together is rare.
 ⇒ Train each of the L classifiers on its own input data.
 Only combination classifier needs to be trained on combined input.
Recap: Bayesian Model Averaging

- **Model Averaging**
 - Suppose we have H different models $h = 1, \ldots, H$ with prior probabilities $p(h)$.
 - Construct the marginal distribution over the data set
 \[
 p(X) = \sum_{h=1}^{H} p(X|h)p(h)
 \]

- **Average error of committee**
 \[
 \mathbb{E}_{COM} = \frac{1}{M} \mathbb{E}_{AV}
 \]
 - This suggests that the average error of a model can be reduced by a factor of M simply by averaging M versions of the model!
 - Unfortunately, this assumes that the errors are all uncorrelated. In practice, they will typically be highly correlated.
Recap: Boosting (Schapire 1989)

- **Algorithm**: (3-component classifier)
 1. Sample $N_1 < N$ training examples (*without replacement*) from training set \mathcal{D} to get set \mathcal{D}_1.
 - Train weak classifier C_1 on \mathcal{D}_1.
 2. Sample $N_2 < N$ training examples (*without replacement*), half of which were misclassified by C_1 to get set \mathcal{D}_2.
 - Train weak classifier C_2 on \mathcal{D}_2.
 3. Choose all data in \mathcal{D} on which C_1 and C_2 disagree to get set \mathcal{D}_3.
 - Train weak classifier C_3 on \mathcal{D}_3.
 4. Get the final classifier output by majority voting of C_1, C_2, and C_3.
 (Recursively apply the procedure on C_1 to C_3)

B. Leibe

Image source: Duda, Hart, Stork, 2001
Recap: AdaBoost - “Adaptive Boosting”

• Main idea
 - Instead of resampling, reweight misclassified training examples.
 - Increase the chance of being selected in a sampled training set.
 - Or increase the misclassification cost when training on the full set.

• Components
 - $h_m(x)$: “weak” or base classifier
 - Condition: <50% training error over any distribution
 - $H(x)$: “strong” or final classifier

• AdaBoost:
 - Construct a strong classifier as a thresholded linear combination of the weighted weak classifiers:
 $$H(x) = \text{sign} \left(\sum_{m=1}^{M} \alpha_m h_m(x) \right)$$

[Freund & Schapire, 1996]
Recap: AdaBoost - Intuition

Consider a 2D feature space with positive and negative examples.

Each weak classifier splits the training examples with at least 50% accuracy.

Examples misclassified by a previous weak learner are given more emphasis at future rounds.
Recap: AdaBoost - Intuition

Weak Classifier 1

Weights Increased

Weak Classifier 2

Figure adapted from Freund & Schapire
Recap: AdaBoost - Intuition

Final classifier is combination of the weak classifiers
Recap: AdaBoost - Algorithm

1. Initialization: Set $w_n^{(1)} = \frac{1}{N}$ for $n = 1, \ldots, N$.

2. For $m = 1, \ldots, M$ iterations
 a) Train a new weak classifier $h_m(x)$ using the current weighting coefficients $W^{(m)}$ by minimizing the weighted error function
 $$J_m = \sum_{n=1}^{N} w_n^{(m)} I(h_m(x) \neq t_n)$$
 \[I(A) = \begin{cases} 1, & \text{if } A \text{ is true} \\ 0, & \text{else} \end{cases} \]

 b) Estimate the weighted error of this classifier on X:
 $$\epsilon_m = \frac{\sum_{n=1}^{N} w_n^{(m)} I(h_m(x) \neq t_n)}{\sum_{n=1}^{N} w_n^{(m)}}$$

 c) Calculate a weighting coefficient for $h_m(x)$:
 $$\alpha_m = \ln \left\{ \frac{1 - \epsilon_m}{\epsilon_m} \right\}$$

 d) Update the weighting coefficients:
 $$w_n^{(m+1)} = w_n^{(m)} \exp \left\{ \alpha_m I(h_m(x_n) \neq t_n) \right\}$$

B. Leibe
Recap: Comparing Error Functions

- Ideal misclassification error function
- “Hinge error” used in SVMs
- Exponential error function
 - Continuous approximation to ideal misclassification function.
 - Sequential minimization leads to simple AdaBoost scheme.
 - Disadvantage: exponential penalty for large negative values!
 ⇒ Less robust to outliers or misclassified data points!

B. Leibe
Image source: Bishop, 2006
Recap: Comparing Error Functions

- Ideal misclassification error function
- “Hinge error” used in SVMs
- Exponential error function
- “Cross-entropy error” \[E = -\sum t_n \ln y_n + (1 - t_n) \ln(1 - y_n) \]
 - Similar to exponential error for \(z > 0 \).
 - Only grows linearly with large negative values of \(z \).

\(\Rightarrow \) Make AdaBoost more robust by switching \(\Rightarrow \) “GentleBoost”

B. Leibe

Image source: Bishop, 2006
Topics of This Lecture

• Decision Trees
 - CART
 - Impurity measures
 - Stopping criterion
 - Pruning
 - Extensions
 - Issues
 - Historical development: ID3, C4.5

• Random Forests
 - Basic idea
 - Bootstrap sampling
 - Randomized attribute selection
 - Applications
Decision Trees

• Very old technique
 - Origin in the 60s, might seem outdated.

• But...
 - Can be used for problems with nominal data
 - E.g. attributes color ∈ {red, green, blue} or weather ∈ {sunny, rainy}.
 - Discrete values, no notion of similarity or even ordering.
 - Interpretable results
 - Learned trees can be written as sets of if-then rules.
 - Methods developed for handling missing feature values.
 - Successfully applied to broad range of tasks
 - E.g. Medical diagnosis
 - E.g. Credit risk assessment of loan applicants
 - Some interesting novel developments building on top of them...
Decision Trees

- Example:
 - “Classify Saturday mornings according to whether they’re suitable for playing tennis.”

B. Leibe

Decision Trees

- Elements
 - Each node specifies a test for some attribute.
 - Each branch corresponds to a possible value of the attribute.
Decision Trees

• Assumption
 ➢ Links must be mutually distinct and exhaustive
 ➢ i.e. one and only one link will be followed at each step.

• Interpretability
 ➢ Information in a tree can then be rendered as logical expressions.
 ➢ In our example:

\[
(Outlook = Sunny \land Humidity = Normal) \\
\lor (Outlook = Overcast) \\
\lor (Outlook = Rain \land Wind = Weak)
\]

Training Decision Trees

- Finding the optimal decision tree is NP-hard...

- Common procedure: Greedy top-down growing
 - Start at the root node.
 - Progressively split the training data into smaller and smaller subsets.
 - In each step, pick the best attribute to split the data.
 - If the resulting subsets are pure (only one label) or if no further attribute can be found that splits them, terminate the tree.
 - Else, recursively apply the procedure to the subsets.

- CART framework
 - Classification And Regression Trees (Breiman et al. 1993)
 - Formalization of the different design choices.
CART Framework

- Six general questions
 1. Binary or multi-valued problem?
 - I.e. how many splits should there be at each node?
 2. Which property should be tested at a node?
 - I.e. how to select the query attribute?
 3. When should a node be declared a leaf?
 - I.e. when to stop growing the tree?
 4. How can a grown tree be simplified or pruned?
 - Goal: reduce overfitting.
 5. How to deal with impure nodes?
 - I.e. when the data itself is ambiguous.
 6. How should missing attributes be handled?
CART - 1. Number of Splits

- Each multi-valued tree can be converted into an equivalent binary tree:

⇒ Only consider binary trees here...
CART - 2. Picking a Good Splitting Feature

• Goal
 - Want a tree that is as simple/small as possible (Occam’s razor).
 - But: Finding a minimal tree is an NP-hard optimization problem.

• Greedy top-down search
 - Efficient, but not guaranteed to find the smallest tree.
 - Seek a property T at each node N that makes the data in the child nodes as pure as possible.
 - For formal reasons more convenient to define impurity $i(N)$.
 - Several possible definitions explored.
CART - Impurity Measures

Misclassification impurity

\[
i(N) = 1 - \max_j p(C_j | N)
\]

“Fraction of the training patterns in category \(C_j \) that end up in node \(N \).”

Problem: discontinuous derivative!

CART - Impurity Measures

- Entropy impurity

\[i(N) = - \sum_j p(C_j|N) \log_2 p(C_j|N) \]

“Reduction in entropy = gain in information.”

B. Leibe

CART - Impurity Measures

- **Gini impurity (variance impurity)**

\[
i(N) = \sum_{i \neq j} p(C_i | N)p(C_j | N)
= \frac{1}{2} \left[1 - \sum_j p^2(C_j | N) \right]
\]

“Expected error rate at node \(N \) if the category label is selected randomly.”

CART - Impurity Measures

- **Which impurity measure should we choose?**
 - Some problems with misclassification impurity.
 - Discontinuous derivative.
 - Problems when searching over continuous parameter space.
 - Sometimes misclassification impurity does not decrease when Gini impurity would.
 - Both entropy impurity and Gini impurity perform well.
 - No big difference in terms of classifier performance.
 - In practice, stopping criterion and pruning method are often more important.
CART - 2. Picking a Good Splitting Feature

- **Application**
 - Select the query that decreases impurity the most
 $$\triangle i(N) = i(N) - P_Li(N_L) - (1 - P_L)i(N_R)$$

- **Multiway generalization (gain ratio impurity):**
 - Maximize
 $$\triangle i(s) = \frac{1}{Z} \left(i(N) - \sum_{k=1}^{K} P_k i(N_k) \right)$$
 - where the normalization factor ensures that large K are not inherently favored:
 $$Z = -\sum_{k=1}^{K} P_k \log_2 P_k$$

B. Leibe
CART - Picking a Good Splitting Feature

- For efficiency, splits are often based on a single feature
 - “Monothetic decision trees”

- Evaluating candidate splits
 - Nominal attributes: exhaustive search over all possibilities.
 - Real-valued attributes: only need to consider changes in label.
 - Order all data points based on attribute x_i.
 - Only need to test candidate splits where $\text{label}(x_i) \neq \text{label}(x_{i+1})$.
CART - 3. When to Stop Splitting

• Problem: Overfitting
 - Learning a tree that classifies the training data perfectly may not lead to the tree with the best generalization to unseen data.
 - Reasons
 - Noise or errors in the training data.
 - Poor decisions towards the leaves of the tree that are based on very little data.

• Typical behavior

Slide adapted from Raymond Mooney
CART - Overfitting Prevention (Pruning)

- Two basic approaches for decision trees
 - Prepruning: Stop growing tree as some point during top-down construction when there is no longer sufficient data to make reliable decisions.
 - Postpruning: Grow the full tree, then remove subtrees that do not have sufficient evidence.

- Label leaf resulting from pruning with the majority class of the remaining data, or a class probability distribution.

\[C_N = \text{arg max}_{k} p(C_k | N) \]

Slide adapted from Raymond Mooney
CART - Stopping Criterion

• Determining which subtrees to prune:
 - **Cross-validation**: Reserve some training data as a hold-out set (validation set, tuning set) to evaluate utility of subtrees.
 - **Statistical test**: Determine if any observed regularity can be dismisses as likely due to random chance.
 - Determine the probability that the outcome of a candidate split could have been generated by a random split.
 - Chi-squared statistic (one degree of freedom)
 \[
 \chi^2 = \sum_{i=1}^{2} \frac{(n_{i,\text{left}} - \hat{n}_{i,\text{left}})^2}{\hat{n}_{i,\text{left}}}
 \]
 "expected number from random split"
 - Compare to critical value at certain confidence level (table lookup).
 - **Minimum description length (MDL)**: Determine if the additional complexity of the hypothesis is less complex than just explicitly remembering any exceptions resulting from pruning.

Slide adapted from Raymond Mooney
CART - 4. (Post-)Pruning

• Stopped splitting often suffers from “horizon effect”
 - Decision for optimal split at node N is independent of decisions at descendent nodes.
 - Might stop splitting too early.
 - Stopped splitting biases learning algorithm towards trees in which the greatest impurity reduction is near the root node.

• Often better strategy
 - Grow tree fully (until leaf nodes have minimum impurity).
 - Then prune away subtrees whose elimination results only in a small increase in impurity.

• Benefits
 - Avoids the horizon effect.
 - Better use of training data (no hold-out set for cross-validation).
(Post-)Pruning Strategies

- Common strategies
 - Merging leaf nodes
 - Consider pairs of neighboring leaf nodes.
 - If their elimination results only in small increase in impurity, prune them.
 - Procedure can be extended to replace entire subtrees with leaf node directly.
 - Rule-based pruning
 - Each leaf has an associated rule (conjunction of individual decisions).
 - Full tree can be described by list of rules.
 - Can eliminate irrelevant preconditions to simplify the rules.
 - Can eliminate rules to improve accuracy on validation set.
 - Advantage: can distinguish between the contexts in which the decision rule at a node is used ⇒ can prune them selectively.
Decision Trees - Handling Missing Attributes

• During training
 - Calculate impurities at a node using only the attribute information present.
 - E.g. 3-dimensional data, one point is missing attribute x_3.
 - Compute possible splits on x_1 using all N points.
 - Compute possible splits on x_2 using all N points.
 - Compute possible splits on x_3 using $N-1$ non-deficient points.
 ⇒ Choose split which gives greatest reduction in impurity.

• During test
 - Cannot handle test patterns that are lacking the decision attribute!
 ⇒ In addition to primary split, store an ordered set of surrogate splits that try to approximate the desired outcome based on different attributes.
Decision Trees - Feature Choice

- Best results if proper features are used

Bad tree
Decision Trees - Feature Choice

- Best results if proper features are used
 - Preprocessing to find important axes often pays off.
Decision Trees - Non-Uniform Cost

- Incorporating category priors
 - Often desired to incorporate different priors for the categories.
 - Solution: weight samples to correct for the prior frequencies.

- Incorporating non-uniform loss
 - Create loss matrix λ_{ij}
 - Loss can easily be incorporated into Gini impurity

$$i(N) = \sum_{ij} \lambda_{ij} p(C_i)p(C_j)$$
Historical Development

• ID3 (Quinlan 1986)
 - One of the first widely used decision tree algorithms.
 - Intended to be used with nominal (unordered) variables
 - Real variables are first binned into discrete intervals.
 - General branching factor
 - Use gain ratio impurity based on entropy (information gain) criterion.

• Algorithm
 - Select attribute a that best classifies examples, assign it to root.
 - For each possible value v_i of a,
 - Add new tree branch corresponding to test $a = v_i$.
 - If example_list(v_i) is empty, add leaf node with most common label in example_list(a).
 - Else, recursively call ID3 for the subtree with attributes $A \setminus a$.
Historical Development

- **C4.5 (Quinlan 1993)**
 - Improved version with extended capabilities.
 - Ability to deal with real-valued variables.
 - Multiway splits are used with nominal data
 - Using gain ratio impurity based on entropy (information gain) criterion.
 - Heuristics for pruning based on statistical significance of splits.
 - Rule post-pruning

- **Main difference to CART**
 - Strategy for handling missing attributes.
 - When missing feature is queried, C4.5 follows all B possible answers.
 - Decision is made based on all B possible outcomes, weighted by decision probabilities at node N.
Decision Trees - Computational Complexity

• Given
 - Data points \(\{x_1, \ldots, x_N\} \)
 - Dimensionality \(D \)

• Complexity
 - Storage: \(O(N) \)
 - Test runtime: \(O(\log N) \)
 - Training runtime: \(O(DN^2 \log N) \)
 - Most expensive part.
 - Critical step: selecting the optimal splitting point.
 - Need to check \(D \) dimensions, for each need to sort \(N \) data points.
 \[O(DN \log N) \]
Summary: Decision Trees

- Properties
 - Simple learning procedure, fast evaluation.
 - Can be applied to metric, nominal, or mixed data.
 - Often yield interpretable results.
Summary: Decision Trees

• Limitations
 - Often produce noisy (bushy) or weak (stunted) classifiers.
 - Do not generalize too well.
 - Training data fragmentation:
 - As tree progresses, splits are selected based on less and less data.
 - Overtraining and undertraining:
 - Deep trees: fit the training data well, will not generalize well to new test data.
 - Shallow trees: not sufficiently refined.
 - Stability
 - Trees can be very sensitive to details of the training points.
 - If a single data point is only slightly shifted, a radically different tree may come out!
 ⇒ Result of discrete and greedy learning procedure.
 - Expensive learning step
 - Mostly due to costly selection of optimal split.
Topics of This Lecture

- Decision Trees
 - CART
 - Impurity measures
 - Stopping criterion
 - Pruning
 - Extensions
 - Issues
 - Historical development: ID3, C4.5

- Random Forests
 - Basic idea
 - Bootstrap sampling
 - Randomized attribute selection
 - Applications
Random Forests (Breiman 2001)

- **Ensemble method**
 - Idea: Create ensemble of many (very simple) trees.

- **Empirically very good results**
 - Often as good as SVMs (and sometimes better)!
 - Often as good as Boosting (and sometimes better)!

- **Standard decision trees: main effort on finding good split**
 - Random Forests trees put very little effort in this.
 - CART algorithm with Gini coefficient, no pruning.
 - Each split is only made based on a random subset of the available attributes.
 - Trees are grown fully (important!).

- **Main secret**
 - Injecting the “right kind of randomness”.

B. Leibe
Random Forests - Algorithmic Goals

- Create many trees (50 - 1,000)
- Inject randomness into trees such that
 - Each tree has maximal strength
 - i.e. a fairly good model on its own
 - Each tree has minimum correlation with the other trees.
 - i.e. the errors tend to cancel out.
- Ensemble of trees votes for final result
 - Simple majority vote for category.

- Alternative (Friedman)
 - Optimally reweight the trees via regularized regression (lasso).
Random Forests - Injecting Randomness (1)

- Bootstrap sampling process
 - Select a training set by choosing N times with replacement from all N available training examples.
 - On average, each tree is grown on only ~63% of the original training data.
 - Remaining 37% “out-of-bag” (OOB) data used for validation.
 - Provides ongoing assessment of model performance.
 - Allows fitting to small data sets without explicitly holding back any data for testing.
Random Forests - Injecting Randomness (2)

- **Random attribute selection**
 - For each node, randomly choose subset of T attributes on which the split is based (typically square root of number available).
 - Evaluate splits only on OOB data (out-of-bag estimate).
 - Very fast training procedure
 - Need to test few attributes.
 - Evaluate only on ~37% of the data.
 - Minimizes inter-tree dependence
 - Reduce correlation between different trees.

- **Each tree is grown to maximal size and is left unpruned**
 - Trees are deliberately overfit
 - Become some form of nearest-neighbor predictor.
Big Question

How can this ever possibly work???
A Graphical Interpretation

Different trees induce different partitions on the data.
A Graphical Interpretation

Different trees induce different partitions on the data.
A Graphical Interpretation

Different trees induce different partitions on the data.

By combining them, we obtain a finer subdivision of the feature space...

Slide credit: Vincent Lepetit
A Graphical Interpretation

Different trees induce different partitions on the data.

By combining them, we obtain a finer subdivision of the feature space... which at the same time also better reflects the uncertainty due to the bootstrapped sampling.

Slide credit: Vincent Lepetit

B. Leibe
Summary: Random Forests

- **Properties**
 - Very simple algorithm.
 - Resistant to overfitting - generalizes well to new data.
 - Very rapid training
 - Also often used for online learning.
 - Extensions available for clustering, distance learning, etc.

- **Limitations**
 - Memory consumption
 - Decision tree construction uses much more memory.
 - Well-suited for problems with little training data
 - Little performance gain when training data is really large.
You Can Try It At Home...

- Free implementations available
 - Original RF implementation by Breiman & Cutler
 - http://www.stat.berkeley.edu/users/breiman/RandomForests/
 - Code + documentation
 - in Fortran 77
 - But also newer version available in Fortran 90!
 - Fast Random Forest implementation for Java (Weka)
 - http://code.google.com/p/fast-random-forest/

Applications

• Computer Vision: fast keypoint detection
 - Detect keypoints: small patches in the image used for matching
 - Classify into one of ~200 categories (visual words)

• Extremely simple features
 - E.g. pixel value in a color channel (CIELab)
 - E.g. sum of two points in the patch
 - E.g. difference of two points in the patch
 - E.g. absolute difference of two points

• Create forest of randomized decision trees
 - Each leaf node contains probability distribution over 200 classes
 - Can be updated and re-normalized incrementally
Application: Fast Keypoint Detection

References and Further Reading

• More information on Decision Trees can be found in Chapters 8.2-8.4 of Duda & Hart.

 R.O. Duda, P.E. Hart, D.G. Stork
 Pattern Classification
 2nd Ed., Wiley-Interscience, 2000

• The original paper for Random Forests: