Recap: Decision Trees

- Example:
 - “Classify Saturday mornings according to whether they’re suitable for playing tennis.”

Recap: CART Framework

- Six general questions
 1. Binary or multi-valued problem? I.e. how many splits should there be at each node?
 2. Which property should be tested at a node? I.e. how to select the query attribute?
 3. When should a node be declared a leaf? I.e. when to stop growing the tree?
 4. How can a grown tree be simplified or pruned? Goal: reduce overfitting.
 5. How to deal with impure nodes? I.e. when the data itself is ambiguous.
 6. How should missing attributes be handled?

Recap: Picking a Good Splitting Feature

- Goal
 - Select the query (=split) that decreases impurity the most

- Impurity measures
 - Entropy impurity (information gain):
 \[i(N) = -\sum_j p(C_j|N) \log_2 p(C_j|N) \]
 - Gini impurity:
 \[i(N) = \sum_{i \neq j} p(C_i|N)p(C_j|N) \left(1 - \sum_j p^2(C_j|N) \right) \]

Recap: Overfitting Prevention (Pruning)

- Two basic approaches for decision trees
 - Prepruning: Stop growing tree as some point during top-down construction when there is no longer sufficient data to make reliable decisions.
 - Cross-validation
 - Chi-square test
 - MDL
 - Postpruning: Grow the full tree, then remove subtrees that do not have sufficient evidence.
 - Merging nodes
 - Rule-based pruning

- In practice often preferable to apply post-pruning.
Recap: Computational Complexity

- Given
 - Data points $\{x_1, ..., x_N\}$
 - Dimensionality D

- Complexity
 - Storage: $O(N)$
 - Test runtime: $O(\log N)$
 - Training runtime: $O(DN^2 \log N)$
 - Most expensive part.
 - Critical step: selecting the optimal splitting point.
 - Need to check D dimensions, for each need to sort N data points.
 $O(DN \log N)$

Summary: Decision Trees

- Limitations
 - Often produce noisy (bushy) or weak (stunted) classifiers.
 - Do not generalize too well.
 - Training data fragmentation:
 - As tree progresses, splits are selected based on less and less data.
 - Overtraining and undertraining:
 - Deep trees: fit the training data well, will not generalize well to new test data.
 - Shallow trees: not sufficiently refined.
 - Stability
 - Trees can be very sensitive to details of the training points.
 - If a single data point is only slightly shifted, a radically different tree may come out!
 - Result of discrete and greedy learning procedure.
 - Expensive learning step
 - Mostly due to costly selection of optimal split.

Randomized Decision Trees (Amit & Geman 1997)

- Decision trees: main effort on finding good split
 - Training runtime: $O(DN^2 \log N)$
 - This is what takes most effort in practice.
 - Especially cumbersome with many attributes (large D).

- Idea: randomize attribute selection
 - No longer look for globally optimal split.
 - Instead randomly use subset of K attributes on which to base the split.
 - Choose best splitting attribute e.g. by maximizing the information gain (= reducing entropy):
 $$\Delta E = \sum_{k=1}^{K} \left(\sum_{j=1}^{N} p_j \log_2(p_j) \right)$$

Topics of This Lecture

- Randomized Decision Trees
 - Randomized attribute selection

- Random Forests
 - Bootstrap sampling
 - Ensemble of randomized trees
 - Posterior sum combination
 - Analysis

- Extremely randomized trees
 - Random attribute selection

- Ferns
 - Fern structure
 - Semi-Naïve Bayes combination
 - Applications

Randomized Decision Trees

- Randomized splitting
 - Faster training: $O(KN^2 \log N)$ with $K \ll D$.
 - Use very simple binary feature tests.
 - Typical choice
 - $K = 10$ for root node.
 - $K = 100d$ for node at level d.

- Effect of random split
 - Of course, the tree is no longer as powerful as a single classifier...
 - But we can compensate by building several trees.
Ensemble Combination

- Ensemble combination
 - Tree leaves \((l, \eta)\) store posterior probabilities of the target classes.
 - Combine the output of several trees by averaging their posteriors (Bayesian model combination)
 \[
p(C|x) = \frac{1}{L} \sum_{l=1}^{L} p_{l,\eta}(C|x)
\]

Applications

- Computer Vision: Optical character recognition
 - Classify small (14x20) images of hand-written characters/digits into one of 10 or 26 classes.
- Simple binary features
 - Tests for individual binary pixel values.
 - Organized in randomized tree.

Applications

- Computer Vision: fast keypoint detection
 - Detect keypoints: small patches in the image used for matching
 - Classify into one of ~200 categories (visual words)
- Extremely simple features
 - E.g. pixel value in a color channel (CIELab)
 - E.g. sum of two points in the patch
 - E.g. difference of two points in the patch
 - E.g. absolute difference of two points
- Create forest of randomized decision trees
 - Each leaf node contains probability distribution over 200 classes
 - Can be updated and re-normalized incrementally.

Topics of This Lecture

- Randomized Decision Trees
 - Randomized attribute selection
- Random Forests
 - Bootstrap sampling
 - Ensemble of randomized trees
 - Posterior sum combination
 - Analysis
 - Extremely randomized trees
 - Random attribute injection
 - Ferns
 - Fern structure
 - Semi-Naïve Bayes combination
 - Applications

Random Forests (Breiman 2001)

- General ensemble method
 - Idea: Create ensemble of many (very simple) trees.
- Empirically very good results
 - Often as good as SVMs (and sometimes better!)
 - Often as good as Boosting (and sometimes better!)
- Standard decision trees: main effort on finding good split
 - Random Forests trees put very little effort in this.
 - CART algorithm with Gini coefficient, no pruning.
 - Each split is only made based on a random subset of the available attributes.
 - Trees are grown fully (important!).
- Main secret
 - Injecting the “right kind of randomness”.

Application: Fast Keypoint Detection

Random Forests - Algorithmic Goals

- Create many trees (50 - 1,000)
- Inject randomness into trees such that
 - Each tree has maximal strength
 - I.e. a fairly good model on its own
 - Each tree has minimum correlation with the other trees.
 - I.e. the errors tend to cancel out.
- Ensemble of trees votes for final result
 - Simple majority vote for category.
 - Alternative (Friedman)
 - Optimally reweight the trees via regularized regression (lasso).

Random Forests - Injecting Randomness (1)

- Bootstrap sampling process
 - Select a training set by choosing \(N \) times with replacement from all \(N \) available training examples.
 - On average, each tree is grown on only ~63% of the original training data.
 - Remaining 37% “out-of-bag” (OOB) data used for validation.
 - Provides ongoing assessment of model performance in the current tree.
 - Allows fitting to small data sets without explicitly holding back any data for testing.
 - Error estimate is unbiased and behaves as if we had an independent test sample of the same size as the training sample.

Random Forests - Injecting Randomness (2)

- Random attribute selection
 - For each node, randomly choose subset of \(K \) attributes on which the split is based (typically \(K = \sqrt{N} \)).
 - Faster training procedure
 - Need to test only few attributes.
 - Minimizes inter-tree dependence
 - Reduce correlation between different trees.
- Each tree is grown to maximal size and is left unpruned
 - Trees are deliberately overfit
 - Become some form of nearest-neighbor predictor.

Bet You’re Asking...

How can this possibly ever work???
A Graphical Interpretation

Different trees induce different partitions on the data.

By combining them, we obtain a finer subdivision of the feature space...

...which at the same time also better reflects the uncertainty due to the bootstrapped sampling.

Summary: Random Forests

- **Properties**
 - Very simple algorithm.
 - Resistant to overfitting - generalizes well to new data.
 - Faster training
 - Extensions available for clustering, distance learning, etc.

- **Limitations**
 - Memory consumption
 - Decision tree construction uses much more memory.
 - Well-suited for problems with little training data
 - Little performance gain when training data is really large.

You Can Try It At Home...

- Free implementations available
 - Original RF implementation by Breiman & Cutler
 - Papers, documentation, and code...
 - ...in Fortran 77.
 - But also newer version available in Fortran 90!
 - Fast Random Forest implementation for Java (Weka)

Topics of This Lecture

- Randomized Decision Trees
 - Randomized attribute selection

- Random Forests
 - Bootstrap sampling
 - Ensemble of randomized trees
 - Posterior sum combination

- Extremely randomized trees
 - Random attribute selection

- Ferns
 - Fern structure
 - Semi-Naïve Bayes combination
 - Applications

A Case Study in Deconstructivism...

- What we’ve done so far
 - Take the original decision tree idea.
 - Throw out all the complicated bits (pruning, etc.).
 - Learn on random subset of training data (bootstrapping/bagging).
 - Select splits based on random choice of candidate queries.
 - So as to maximize information gain.
 - Complexity: \(O(N^2 \log N) \)
 - Ensemble of weaker classifiers.

- How can we further simplify that?
 - Main effort still comes from selecting the optimal split (from reduced set of options)...
 - Simply choose a random query at each node.
 - Complexity: \(O(N) \)
 - **Extremely randomized decision trees**
Extremely Randomized Decision Trees

- Random queries at each node...
 - Tree gradually develops from a classifier to a flexible container structure.
 - Node queries define (randomly selected) structure.
 - Each leaf node stores posterior probabilities

- Learning
 - Patches are “dropped down” the trees.
 - Only pairwise pixel comparisons at each node.
 - Directly update posterior distributions at leaves
 - Very fast procedure, only few pixel-wise comparisons
 - No need to store the original patches!

Performance Comparison

- Results
 - Almost equal performance for random tests when a sufficient number of trees is available (and much faster to train!).

Topics of This Lecture

- Randomized Decision Trees
 - Randomized attribute selection
- Random Forests
 - Bootstrap sampling
 - Ensemble of randomized trees
 - Posterior sum combination
 - Analysis
- Extremely randomized trees
 - Random attribute selection
- Ferns
 - Fern structure
 - Semi-Naïve Bayes combination
 - Applications

From Trees to Ferns...

- Observation
 - If we select the node queries randomly anyway, what is the point of choosing different ones for each node?
 - Keep the same query for all nodes at a certain level.
 - This effectively enumerates all 2^M possible outcomes of the M tree queries.
 - Tree can be collapsed into a fern-like structure.

What Does This Mean?

- Interpretation of the decision tree
 - We model the class conditional probabilities of a large number of binary features (the node queries).
 - Notation
 - f_i: Binary feature
 - N_f: Total number of features in the model.
 - C_k: Target class
 - Given f_1, \ldots, f_N, we want to select class C_k such that
 $$k = \arg \max_k p(C_k | f_1, \ldots, f_N)$$
 - Assuming a uniform prior over classes, this is equal to
 $$k = \arg \max_k p(f_1, \ldots, f_N | C_k)$$
 - Main issue: How do we model the joint distribution?

Modeling the Joint Distribution

- Full Joint
 - Model all correlations between features
 $$p(f_1, \ldots, f_N | C_k)$$
 - Model with 2^{N_f} parameters, not feasible to learn.

- Naïve Bayes classifier
 - Assumption: all features are independent.
 $$p(f_1, \ldots, f_N | C_k) = \prod_{i=1}^{N_f} p(f_i | C_k)$$
 - Too simplistic, assumption does not really hold!
 - Naïve Bayes model ignores correlation between features.
Modeling the Joint Distribution

- **Decision tree**
 - Each path from the root to a leaf corresponds to a specific combination of feature outcomes, e.g.
 \[p_{\text{leaf}}(C_k) = p(f_{m1} = 1, f_{m2} = 0, \ldots, f_{md} = 1 | C_k) \]
 - Those path outcomes are independent, therefore
 \[p(f_1, \ldots, f_{N_f} | C_k) = \prod_{m=1}^{M} p_{\text{leaf}}(C_k) \]
 - But not all feature outcomes are represented here...

- **Ferns**
 - A fern \(F \) is defined as a set of \(S \) binary features \{\(f_1, \ldots, f_L \}\).
 - \(M \): number of ferns, \(N_f = S \cdot M \).
 - This represents a compromise:
 \[
 p(f_1, \ldots, f_{N_f} | C_k) \approx M \prod_{j=1}^{M} p(F_j | C_k)
 \]
 \[
 = p(f_1, \ldots, f_S | C_k) \cdot p(f_{S+1}, \ldots, f_{2S} | C_k) \cdot \ldots
 \]
 Full joint inside fern
 Naïve Bayes between ferns
 - Model with \(M \cdot 2^S \) parameters (“Semi-Naïve”).
 - Flexible solution that allows complexity/performance tuning.

- **Interpretation**
 - Combine the tests \(f_1, \ldots, f_L \) into a binary number.
 - Update the “fern leaf” corresponding to that number.
 - \(\begin{bmatrix} 0 & 1 \end{bmatrix} \) Update leaf 1002 = 4

Ferns - Training

The tests compare the intensities of two pixels around the keypoint:
\[
\begin{cases}
 1 & \text{if } I(\bullet) \leq I(\circ) \\
 0 & \text{otherwise}
\end{cases}
\]
Invariant to light change by any raising function.

Posterior probabilities:
\[p(f_1, f_2, \ldots, f_L | \theta = \alpha) \]
Ferns – Training

Ferns – Training Results

Normalize:

\[\sum = 1 \]

Ferns – Recognition

Slide credit: Vincent Lepetit
B. Leibe
• Results
 - Ferns perform as well as randomized trees (but are much faster)
 - Naïve Bayes combination better than averaging posteriors.

Keypoint Recognition in 10 Lines of Code

```c
1: for(int i = 0; i < H; i++) P[i] = 0.;
2: for(int k = 0; k < M; k++) {
3:   int index = 0, * d = D + k * 2 * S;
4:   for(int j = 0; j < S; j++) {
5:     index <<= 1;
6:     if (*(K + d[0]) < *(K + d[1]))
7:       index++;
8:     d += 2;
9:   } p = PF + k * shift2 + index * shift1;
10:   for(int i = 0; i < H; i++) P[i] += p[i];
}
```

Properties
- Very simple to implement;
- (Almost) no parameters to tune;
- Very fast.

Application: Keypoint Matching with Ferns

Application: Mobile Augmented Reality

Practical Issues - Selecting the Tests

• For a small number of classes
 - We can try several tests.
 - Retain the best one according to some criterion.
 - E.g. entropy, Gini

• When the number of classes is large
 - Any test does a decent job.

Summary

• We started from full decision trees...
 - Successively simplified the classifiers...
• ...and ended up with very simple randomized versions
 - Ensemble methods: Combination of many simple classifiers
 - Good overall performance
 - Very fast to train and to evaluate

• Common limitations of Randomized Trees and Ferns?
 - Need large amounts of training data!
 - In order to fill the many probability distributions at the leaves.
 - Memory consumption!
 - Linear in the number of trees.
 - Exponential in the tree depth.
 - Linear in the number of classes (histogram at each leaf!)
References and Further Reading

- Very recent topics, not covered sufficiently well in books yet...

- The original papers for Randomized Trees

- The original paper for Random Forests:

- The papers for Ferns:
 - D. Wagner, G. Retinay, A. Mullen, T. Drummond, D. Schmalstieg, Pose Tracking from Natural Features on Mobile Phones, In ISMAR 2008.