Topics of This Lecture

- Graphical Models
 - Introduction
- Directed Graphical Models (Bayesian Networks)
 - Notation
 - Conditional probabilities
 - Computing the joint probability
 - Factorization
 - Conditional Independence
 - D-Separation
 - Explaining away
- Outlook: Inference in Graphical Models

Graphical Models

- There are two basic kinds of graphical models
 - Directed graphical models or Bayesian Networks
 - Undirected graphical models or Markov Random Fields

Key components

- Nodes
- Edges

Course Outline

- Fundamentals (2 weeks)
 - Bayes Decision Theory
 - Probability Density Estimation
- Discriminative Approaches (5 weeks)
 - Lin. Discriminants, SVMs, Boosting
- Graphical Models (5 weeks)
 - Bayesian Networks
 - Markov Random Fields
 - Exact Inference
 - Approximate Inference
- Regression Problems (2 weeks)
 - Gaussian Processes

Graphical Models - What and Why?

- It’s got nothing to do with graphics!
- Probabilistic graphical models
 - Marriage between probability theory and graph theory.
 - Formalize and visualize the structure of a probabilistic model through a graph.
 - Give insights into the structure of a probabilistic model.
 - Find efficient solutions using methods from graph theory.
 - Natural tool for dealing with uncertainty and complexity.
 - Becoming increasingly important for the design and analysis of machine learning algorithms.
 - Often seen as new and promising way to approach problems related to Artificial Intelligence.
Example: Wet Lawn

- Mr. Holmes leaves his house.
 - He sees that the lawn in front of his house is wet.
 - This can have several reasons: Either it rained, or Holmes forgot to shut the sprinkler off.
 - Without any further information, the probability of both events (rain, sprinkler) increases (knowing that the lawn is wet).
- Now Holmes looks at his neighbor’s lawn
 - The neighbor’s lawn is also wet.
 - This information increases the probability that it rained. And it lowers the probability for the sprinkler.

⇒ How can we encode such probabilistic relationships?

Directed Graphical Models

- or Bayesian networks
 - Are based on a directed graph.
 - The nodes correspond to the random variables.
 - The directed edges correspond to the (causal) dependencies among the variables.
 - The notion of a causal nature of the dependencies is somewhat hard to grasp.
 - We will typically ignore the notion of causality here.
 - The structure of the network qualitatively describes the dependencies of the random variables.

Example: Wet Lawn

- Directed graphical model / Bayesian network:

 “Rain can cause both lawns to be wet.”

 “Holmes’ lawn may be wet due to his sprinkler, but his neighbor’s lawn may not.”

Directed Graphical Models

- Nodes or random variables
 - We usually know the range of the random variables.
 - The value of a variable may be known or unknown.
 - If they are known (observed), we usually shade the node:

 - unknown
 - known

- Examples of variable nodes
 - Binary events: Rain (yes / no), sprinkler (yes / no)
 - Discrete variables: Ball is red, green, blue, ...
 - Continuous variables: Age of a person, ...

Directed Graphical Models

- Most often, we are interested in quantitative statements
 - I.e. the probabilities (or densities) of the variables.
 - Example: What is the probability that it rained? ...
 - These probabilities change if we have
 - more knowledge,
 - less knowledge, or
 - different knowledge
 about the other variables in the network.

Directed Graphical Models

- Simplest case:

 - This model encodes
 - The value of b depends on the value of a.
 - This dependency is expressed through the conditional probability: $p(b|a)$
 - Knowledge about a is expressed through the prior probability: $p(a)$
 - The whole graphical model describes the joint probability of a and b: $p(a, b) = p(b|a)p(a)$
Directed Graphical Models

- If we have such a representation, we can derive all other interesting probabilities from the joint.
 - E.g. marginalization

\[p(a) = \sum_b p(a,b) = \sum_b p(b|a)p(a) \]
\[p(b) = \sum_a p(a,b) = \sum_a p(a|b)p(b) \]

- With the marginals, we can also compute other conditional probabilities:

\[p(a|b) = \frac{p(a,b)}{p(b)} \]

Directed Graphical Models

- Convergent connections:

 - Here the value of \(c \) depends on both variables \(a \) and \(b \).
 - This is modeled with the conditional probability:

\[p(c|a,b) \]

- Therefore, the joint probability of all three variables is given as:

\[p(a,b,c) = p(c|a,b)p(a,b) = p(c|a,b)p(a)p(b) \]

Example 1: Classifier Learning

- Bayesian classifier learning
 - Given \(N \) training examples \(x = (x_1, \ldots, x_N) \) with target values \(t \)
 - We want to optimize the classifier \(y \) with parameters \(w \).
 - We can express the joint probability of \(t \) and \(w \):

\[p(t, w) = p(t) \prod_{n=1}^{N} p(x_n|w, y_n) \]

- Corresponding Bayesian network:

Example 2

- Evaluating the Bayesian network...

 - We start with the simple product rule:

\[p(a,b,c) = p(a|b,c)p(b,c) = p(a)p(b|c)c(p(c) \]

 - This means that we can rewrite the joint probability of the variables as

\[p(C, S, R, W) = p(C)p(S|C)p(R|C, S)p(W|S, R) \]

 - But the Bayesian network tells us that

\[p(C, S, R, W) = p(C)p(S|C)p(R|C)p(W|S, R) \]

 - i.e. rain is independent of sprinkler (given the cloudyiness).
 - Wet grass is independent of the cloudyiness (given the state of the sprinkler and the rain).

 - This is a factorized representation of the joint probability.

Example 2

- Evaluating the Bayesian network...

 - We start with the simple product rule:

\[p(a,b,c) = p(a|b,c)p(b,c) = p(a)p(b|c)c(p(c) \]

 - This means that we can rewrite the joint probability of the variables as

\[p(C, S, R, W) = p(C)p(S|C)p(R|C, S)p(W|S, R) \]

 - But the Bayesian network tells us that

\[p(C, S, R, W) = p(C)p(S|C)p(R|C)p(W|S, R) \]

 - i.e. rain is independent of sprinkler (given the cloudyiness).
 - Wet grass is independent of the cloudyiness (given the state of the sprinkler and the rain).

 - This is a factorized representation of the joint probability.
Directed Graphical Models

- A general directed graphical model (Bayesian network) consists of
 - A set of variables: \(U = \{x_1, \ldots, x_n\} \)
 - A set of directed edges between the variable nodes.
 - The variables and the directed edges define an acyclic graph.
 - Acyclic means that there is no directed cycle in the graph.
 - For each variable \(x_i \) with parent nodes \(pa_i \) in the graph, we require knowledge of a conditional probability:
 \[p(x_i | \{x_j | j \in pa_i\}) \]

Given
- Variables: \(U = \{x_1, \ldots, x_n\} \)
- Directed acyclic graph: \(G = (V,E) \)
 - \(V \): nodes = variables, \(E \): directed edges
- We can express / compute the joint probability as
 \[p(x_1, \ldots, x_n) = \prod_{i=1}^{n} p(x_i | \{x_j | j \in pa_i\}) \]
- We can express the joint as a product of all the conditional distributions from the parent-child relations in the graph.
- We obtain a factorized representation of the joint.

Exercise: Computing the joint probability
\[p(x_1, \ldots, x_3) = ? \]

Exercise: Computing the joint probability
\[p(x_1, \ldots, x_3) = p(x_1)p(x_2)p(x_3)p(x_4|x_1, x_2, x_3) \ldots \]

Exercise: Computing the joint probability
\[p(x_1, \ldots, x_3) = p(x_1)p(x_2)p(x_3)p(x_4|x_1, x_2, x_3) \]
\[p(x_5|x_1, x_3) \ldots \]
Perceptual and Sensory Augmented Computing

Exercise: Computing the joint probability

\[p(x_1, \ldots, x_T) = p(x_1)p(x_2|x_1)p(x_3|x_1, x_2)p(x_4|x_1, x_2, x_3) \]

\[p(x_5|x_1, x_2)p(x_6|x_4)|x_5) \ldots \]

Factorized Representation

Reduction of complexity
- Joint probability of \(n \) binary variables requires us to represent values by brute force:
 \[O(2^n) \] terms
- The factorized form obtained from the graphical model only requires:
 \[O(n \cdot 2^k) \] terms
 where \(k \) is maximum number of parents of a node.

Conditional Independence

\[p(x_0, x_1, x_2, x_3) = p(x_0)p(x_1|x_0, x_2)p(x_2|x_0, x_1)p(x_3|x_0)p(x_0) \]

Now, we can make a simplifying assumption
- Only the previous word is what matters, i.e., given the previous word we can forget about every word before the previous one.
- E.g., \(p(x_4|x_3, x_1, x_2) = p(x_4|x_3) \) or \(p(x_3|x_2, x_1) = p(x_3|x_2) \)
- Such assumptions are called conditional independence assumptions.

Conditional Independence

- The notion of conditional independence means that
 - Given a certain variable, other variables become independent.
 - More concretely here:
 \[p(x_0|x_3, x_1, x_2) = p(x_0|x_3) \]
 - This means that \(x_3 \) is conditionally independent from \(x_0 \) given \(x_3 \).
 - Given \(x_0 \):
 \[p(x_2|x_0, x_1) = p(x_2|x_1) \]
 - This means that \(x_2 \) is conditionally independent from \(x_1 \) given \(x_2 \).
 - Why is this?
 \[p(x_0, x_2|x_1) = p(x_0|x_2)p(x_2|x_1) \]
 \[= p(x_2|x_1)p(x_0|x_2|x_1) \]
 \[\text{Independent given } x_1 \]

General factorization

\[p(x) = \prod_{k=1}^{\text{variables}} p(x_k|x_{pa_k}) \]
Conditional Independence - Notation

- \(X \) is conditionally independent of \(Y \) given \(V \)
 - Equivalence: \(X \perp Y \mid V \Leftrightarrow p(X,Y \mid V) = p(X \mid V)p(Y \mid V) \)
 - Also: \(X \perp Y \mid V \Leftrightarrow p(X,Y \mid V) = p(X \mid V)p(Y \mid V) \)
 - Special case: Marginal independence
 \(X \perp Y \Leftrightarrow X \perp Y \mid \emptyset \Leftrightarrow p(X,Y) = p(X)p(Y) \)
 - Often, we are interested in conditional independence between sets of variables:
 \(X \perp Y \mid V \Leftrightarrow \{X \perp Y \mid \forall X \in X \text{ and } \forall Y \in Y\} \)

Conditional Independence

- Directed graphical models are not only useful...
 - Because the joint probability is factorized into a product of simpler conditional distributions.
 - But also, because we can read off the conditional independence of variables.
- Let’s discuss this in more detail...

First Case: “Tail-to-tail”

- Divergent model
 - Are \(a \) and \(b \) independent?
 - Marginalize out \(c \):
 \[p(a,b) = \sum_{c} p(a,b,c) = \sum_{c} p(a|c)p(b|c)p(c) \]
 - In general, this is not equal to \(p(a)p(b) \).
 \(\Rightarrow \) The variables are not independent.

First Case: “Tail-to-tail”

- What about now?
 - Are \(a \) and \(b \) independent?
 - Marginalize out \(c \):
 \[p(a,b) = \sum_{c} p(a,b,c) = \sum_{c} p(a|c)p(b|c)p(c) = p(a)p(b) \]
 - If there is no undirected connection between two variables, then they are independent.

First Case: Divergent (“Tail-to-Tail”)

- Let’s return to the original graph, but now assume that we observe the value of \(c \):
 - The conditional probability is given by:
 \[p(a,b|c) = \frac{p(a,b,c)}{p(c)} = \frac{p(a|c)p(b|c)p(c)}{p(c)} = p(a|c)p(b|c) \]
 \(\Rightarrow \) If \(c \) becomes known, the variables \(a \) and \(b \) become conditionally independent.

Second Case: Chain (“Head-to-Tail”)

- Let us consider a slightly different graphical model:
 - Are \(a \) and \(b \) independent? No!
 \[p(a,b) = \sum_{c} p(a,b,c) = p(b|c)p(a)p(c) = p(b)p(a) \]
 - If \(c \) becomes known, are \(a \) and \(b \) conditionally independent? Yes!
 \[p(a,b|c) = \frac{p(a,b,c)}{p(c)} = \frac{p(a)p(c|b)p(b|c)p(c)}{p(c)} = p(a)p(b|c) \]
Third Case: Convergent (“Head-to-Head”)

- Let’s look at a final case: Convergent graph

 - Are a and b independent? **YES!**

 $$p(a, b) = \sum_c p(a, b, c) = \sum_c p(c|a, b)p(a)p(b) = p(a)p(b)$$

 - This is very different from the previous cases.
 - Even though a and b are connected, they are independent.

Summary: Conditional Independence

- Three cases
 - **Divergent (“Tail-to-Tail”)**
 - Conditional independence when c is observed.
 - **Chain (“Head-to-Tail”)**
 - Conditional independence when c is observed.
 - **Convergent (“Head-to-Head”)**
 - Conditional independence when neither c, nor any of its descendants are observed.

D-Separation

- Definition
 - Let A, B, and C be non-intersecting subsets of nodes in a directed graph.
 - A path from A to B is **blocked** if it contains a node such that either
 - The arrows meet either head-to-tail or tail-to-tail at the node, and the node is in the set C, or
 - The arrows meet head-to-head at the node, and neither the node, nor any of its descendants, are in the set C.
 - If all paths from A to B are blocked, A is said to be d-separated from B by C.

 - If A is d-separated from B by C, the joint distribution over all variables in the graph satisfies $A \perp B | C$.
 - Read: “A is conditionally independent of B given C.”

D-Separation: Example

- Exercise: What is the relationship between a and b?

 - Observation “a and b are connected” increases the probability both of “Rain” as well as “Sprinkler.”

Explaining Away

- Let’s look at Holmes’ example again:

 - Observation “Holmes’ lawn is wet” increases the probability both of “Rain” as well as “Sprinkler.”
Explaining Away

- Let’s look at Holmes’ example again:

```
<table>
<thead>
<tr>
<th>Rain</th>
<th>Sprinkler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neighbor's lawn is wet</td>
<td>Holmes' lawn is wet</td>
</tr>
</tbody>
</table>
```

- Observation “Holmes’ lawn is wet” increases the probability both of “Rain” as well as “Sprinkler”.
- Also observing “Neighbor’s lawn is wet” decreases the probability for “Sprinkler”.

⇒ The “Sprinkler” is explained away.

Topics of This Lecture

- Graphical Models
 - Introduction
- Directed Graphical Models (Bayesian Networks)
 - Notation
 - Conditional probabilities
 - Computing the joint probability
 - Factorisation
 - Conditional independence
 - Decomposition
 - Explaining away
- Outlook: Inference in Graphical Models
 - Efficiency considerations

Outlook: Inference in Graphical Models

- Inference
 - Evaluate the probability distribution over some set of variables, given the values of another set of variables (observations).

- Example:
 - \(p(A, B, C, D, E) = p(A)p(B)p(C|A, B)p(D|B, C)p(E|C, D) \)
 - How can we compute \(p(A|C = c) \)?
 - Idea:
 - \(p(A|C = c) = \frac{p(A, C = c)}{p(C = c)} \)

Inference in Graphical Models

- We know
 - \(p(A, B, C, D, E) = p(A)p(B)p(C|A, B)p(D|B, C)p(E|C, D) \)

- More efficient method for \(p(A|C = c) \):
 - \(p(A|C = c) = \sum_{D, B} p(A)p(B)p(C = c|A, B)p(D|B, C = c)p(E|C = c, D) \)
 - \(= \sum_{D, B} p(A)p(B)p(C = c|A, B) \sum_{B} p(D|B, C = c) \sum_{E} p(E|C = c, D) \)
 - \(= \sum_{D, B} p(A)p(B)p(C = c|A, B) \)
 - 4 operations
 - Rest stays the same: Total: \(4+2+2 = 8 \) operations

Could’t we have got this result easier?

Inference in Graphical Models

- Computing \(p(A|C = c) \):
 - We know
 - \(p(A, B, C, D, E) = p(A)p(B)p(C|A, B)p(D|B, C)p(E|C, D) \)
 - Assume each variable is binary.

- Naïve approach:
 - \(p(A, C = c) = \sum_{B, D, E} p(A, B, C = c, D, E) \) 16 operations
 - \(p(C = c) = \sum_{A} p(A, C = c) \) 2 operations
 - \(p(A|C = c) = \frac{p(A, C = c)}{p(C = c)} \) 2 operations

 Total: \(16+2+2 = 20 \) operations

Inference in Graphical Models

- Consider the network structure
 - Using what we know about conditional independence...

- Conditional independence properties:
 - \(C \) blocks all paths from \(A \) to \(E \) and \(D \) (“head-to-tail”).
 - \(A \) is conditionally independent of \(E \) and \(D \) given \(C \).
 - Total operations: \(8 \)
 - \(C \) opens the path from \(A \) to \(B \) (“tail-to-tail”).
 - Total operations: \(8 \)
 - When querying for for \(p(A|C = c) \), we only need to take into account \(A \), \(B \), and \(C = c \).
 - \(p(A|C = c) = \sum_{B} p(A)p(B)p(C = c|A, B) \)
Summary

- Graphical models
 - Marriage between probability theory and graph theory.
 - Give insights into the structure of a probabilistic model.
 - Direct dependencies between variables.
 - Conditional independence
 - Allow for efficient factorization of the joint.
 - Factorization can be read off directly from the graph.
 - We will use this for efficient inference algorithms!
 - Capability to explain away hypotheses by new evidence.

- Next week
 - Undirected graphical models (Markov Random Fields)
 - Efficient methods for performing exact inference.

References and Further Reading

- A thorough introduction to Graphical Models in general and Bayesian Networks in particular can be found in Chapter 8 of Bishop’s book.