Machine Learning - Lecture 11

Introduction to Graphical Models

09.06.2009

Bastian Leibe
RWTH Aachen
http://www.umic.rwth-aachen.de/multimedia
leibe@umic.rwth-aachen.de

Many slides adapted from B. Schiele, S. Roth
Course Outline

• Fundamentals (2 weeks)
 - Bayes Decision Theory
 - Probability Density Estimation

• Discriminative Approaches (5 weeks)
 - Lin. Discriminants, SVMs, Boosting

• Graphical Models (5 weeks)
 - Bayesian Networks
 - Markov Random Fields
 - Exact Inference
 - Approximate Inference

• Regression Problems (2 weeks)
 - Gaussian Processes

B. Leibe
Topics of This Lecture

• Graphical Models
 - Introduction

• Directed Graphical Models (Bayesian Networks)
 - Notation
 - Conditional probabilities
 - Computing the joint probability
 - Factorization
 - Conditional Independence
 - D-Separation
 - Explaining away

• Outlook: Inference in Graphical Models
Graphical Models - What and Why?

- It’s got nothing to do with graphics!

- Probabilistic graphical models
 - Marriage between probability theory and graph theory.
 - Formalize and visualize the structure of a probabilistic model through a graph.
 - Give insights into the structure of a probabilistic model.
 - Find efficient solutions using methods from graph theory.

- Natural tool for dealing with uncertainty and complexity.
- Becoming increasingly important for the design and analysis of machine learning algorithms.
- Often seen as new and promising way to approach problems related to Artificial Intelligence.

Slide credit: Bernt Schiele
Graphical Models

- There are two basic kinds of graphical models
 - Directed graphical models or Bayesian Networks
 - Undirected graphical models or Markov Random Fields

- Key components
 - Nodes
 - Edges
 - Directed or undirected
Topics of This Lecture

• Graphical Models
 - Introduction

• Directed Graphical Models (Bayesian Networks)
 - Notation
 - Conditional probabilities
 - Computing the joint probability
 - Factorization
 - Conditional Independence
 - D-Separation
 - Explaining away

• Outlook: Inference in Graphical Models
Example: Wet Lawn

• Mr. Holmes leaves his house.
 ➢ He sees that the lawn in front of his house is wet.
 ➢ This can have several reasons: Either it rained, or Holmes forgot to shut the sprinkler off.
 ➢ Without any further information, the probability of both events (rain, sprinkler) increases (knowing that the lawn is wet).

• Now Holmes looks at his neighbor’s lawn
 ➢ The neighbor’s lawn is also wet.
 ➢ This information increases the probability that it rained. And it lowers the probability for the sprinkler.

⇒ How can we encode such probabilistic relationships?
Example: Wet Lawn

- Directed graphical model / Bayesian network:

 - Rain
 - Sprinkler

 "Rain can cause both lawns to be wet."
 "Holmes’ lawn may be wet due to his sprinkler, but his neighbor’s lawn may not."

Slide credit: Bernt Schiele, Stefan Roth
Directed Graphical Models

- or Bayesian networks
 - Are based on a directed graph.
 - The nodes correspond to the random variables.
 - The directed edges correspond to the (causal) dependencies among the variables.
 - The notion of a causal nature of the dependencies is somewhat hard to grasp.
 - We will typically ignore the notion of causality here.
 - The structure of the network qualitatively describes the dependencies of the random variables.
Directed Graphical Models

- Nodes or random variables
 - We usually know the range of the random variables.
 - The value of a variable may be known or unknown.
 - If they are known (observed), we usually shade the node:
 - unknown
 - known

- Examples of variable nodes
 - Binary events: Rain (yes / no), sprinkler (yes / no)
 - Discrete variables: Ball is red, green, blue, ...
 - Continuous variables: Age of a person, ...
Directed Graphical Models

- Most often, we are interested in quantitative statements
 - i.e. the probabilities (or densities) of the variables.
 - Example: What is the probability that it rained? ...

- These probabilities change if we have
 - more knowledge,
 - less knowledge, or
 - different knowledge
 about the other variables in the network.
Directed Graphical Models

- Simplest case:

- This model encodes
 - The value of b depends on the value of a.
 - This dependency is expressed through the conditional probability:
 \[p(b|a) \]
 - Knowledge about a is expressed through the prior probability:
 \[p(a) \]
 - The whole graphical model describes the joint probability of a and b:
 \[p(a, b) = p(b|a)p(a) \]

Slide credit: Bernt Schiele, Stefan Roth
Directed Graphical Models

- If we have such a representation, we can derive all other interesting probabilities from the joint.
 - E.g. marginalization

\[
p(a) = \sum_b p(a, b) = \sum_b p(b|a)p(a)
\]

\[
p(b) = \sum_a p(a, b) = \sum_a p(b|a)p(a)
\]

- With the marginals, we can also compute other conditional probabilities:

\[
p(a|b) = \frac{p(a, b)}{p(b)}
\]
Directed Graphical Models

- **Chains of nodes:**

 - As before, we can compute

 $$ p(a, b) = p(b|a)p(a) $$

 - But we can also compute the joint distribution of all three variables:

 $$ p(a, b, c) = p(c|a, b)p(a, b) $$

 $$ = p(c|b)p(b|a)p(a) $$

- We can read off from the graphical representation that variable c does not depend on a, if b is known.
 - How? What does this mean?
Directed Graphical Models

- **Convergent connections:**

 Here the value of c depends on both variables a and b.

 This is modeled with the conditional probability:

 \[p(c|a, b) \]

 Therefore, the joint probability of all three variables is given as:

 \[
p(a, b, c) = p(c|a, b)p(a, b) \\
 = p(c|a, b)p(a)p(b)
 \]
Example 1: Classifier Learning

- Bayesian classifier learning
 - Given \(N \) training examples \(x = \{x_1, \ldots, x_N\} \) with target values \(t \)
 - We want to optimize the classifier \(y \) with parameters \(w \).
 - We can express the joint probability of \(t \) and \(w \):
 \[
p(t, w) = p(w) \prod_{n=1}^{N} p(t_n | y(w, x_n))
 \]
 - Corresponding Bayesian network:

Diagram:

Short notation:

- “Plate”

B. Leibe
Example 2

Let’s see what such a Bayesian network could look like...

- Structure?
- Variable types? Binary.
- Conditional probability tables?

\[p(C) \]
\[\frac{p(C = F)}{0.5} \cdot \frac{p(C = T)}{0.5} \]

\[p(S|C) \]

<table>
<thead>
<tr>
<th>C</th>
<th>(p(S = F))</th>
<th>(p(S = T))</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>T</td>
<td>0.9</td>
<td>0.1</td>
</tr>
</tbody>
</table>

\[p(R|C) \]

<table>
<thead>
<tr>
<th>C</th>
<th>(p(R = F))</th>
<th>(p(R = T))</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>0.8</td>
<td>0.2</td>
</tr>
<tr>
<td>T</td>
<td>0.2</td>
<td>0.8</td>
</tr>
</tbody>
</table>

\[p(W|R, S) \]

<table>
<thead>
<tr>
<th>SR</th>
<th>(p(W = F))</th>
<th>(p(W = T))</th>
</tr>
</thead>
<tbody>
<tr>
<td>FF</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>TF</td>
<td>0.1</td>
<td>0.9</td>
</tr>
<tr>
<td>FT</td>
<td>0.1</td>
<td>0.9</td>
</tr>
<tr>
<td>TT</td>
<td>0.01</td>
<td>0.99</td>
</tr>
</tbody>
</table>
Example 2

- Evaluating the Bayesian network...
 - We start with the simple product rule:
 \[p(a, b, c) = p(a | b, c)p(b, c) \]
 \[= p(a | b)p(b | c)p(c) \]
 - This means that we can rewrite the joint probability of the variables as
 \[p(C, S, R, W) = p(C)p(S | C)p(R | C, S)p(W | C, S, R) \]
 - But the Bayesian network tells us that
 \[p(C, S, R, W) = p(C)p(S | C)p(R | C)p(W | S, R) \]
 - i.e. rain is independent of sprinkler (given the cloudyness).
 - Wet grass is independent of the cloudiness (given the state of the sprinkler and the rain).
 \[\Rightarrow \text{This is a factorized representation of the joint probability.} \]
Directed Graphical Models

- A general directed graphical model (Bayesian network) consists of
 - A set of variables: \(U = \{x_1, \ldots, x_n\} \)
 - A set of directed edges between the variable nodes.
 - The variables and the directed edges define an acyclic graph.
 - Acyclic means that there is no directed cycle in the graph.
 - For each variable \(x_i \) with parent nodes \(\text{pa}_i \) in the graph, we require knowledge of a conditional probability:
 \[
p(x_i | \{x_j | j \in \text{pa}_i \})
 \]
Directed Graphical Models

- **Given**
 - **Variables:** $U = \{x_1, \ldots, x_n\}$
 - **Directed acyclic graph:** $G = (V, E)$
 - V: nodes = variables, E: directed edges

- We can express / compute the joint probability as
 \[
p(x_1, \ldots, x_n) = \prod_{i=1}^{n} p(x_i | \{x_j | j \in \text{pa}_i \})
 \]

- We can express the joint as a product of all the conditional distributions from the parent-child relations in the graph.
- We obtain a factorized representation of the joint.
Directed Graphical Models

- Exercise: Computing the joint probability

\[p(x_1, \ldots, x_7) = ? \]
Directed Graphical Models

- Exercise: Computing the joint probability

\[p(x_1, \ldots, x_7) = p(x_1)p(x_2)p(x_3) \ldots \]
Directed Graphical Models

• Exercise: Computing the joint probability

\[p(x_1, \ldots, x_7) = p(x_1)p(x_2)p(x_3)p(x_4|x_1, x_2, x_3) \]

\[\ldots \]
Directed Graphical Models

- Exercise: Computing the joint probability

\[
p(x_1, \ldots, x_7) = p(x_1)p(x_2)p(x_3)p(x_4|x_1, x_2, x_3) \\
p(x_5|x_1, x_3) \ldots
\]
Directed Graphical Models

- Exercise: Computing the joint probability

\[
p(x_1, \ldots, x_7) = p(x_1)p(x_2)p(x_3)p(x_4|x_1, x_2, x_3) \\
p(x_5|x_1, x_3)p(x_6|x_4) \ldots
\]
Directed Graphical Models

- Exercise: Computing the joint probability

\[p(x_1, \ldots, x_7) = p(x_1)p(x_2)p(x_3)p(x_4|x_1, x_2, x_3) \]
\[p(x_5|x_1, x_3)p(x_6|x_4)p(x_7|x_4, x_5) \]

General factorization

\[p(x) = \prod_{k=1}^{K} p(x_k|pa_k) \]

We can directly read off the factorization of the joint from the network structure!
Factorized Representation

- **Reduction of complexity**
 - Joint probability of n binary variables requires us to represent values by brute force

\[O(2^n) \text{ terms} \]

- The factorized form obtained from the graphical model only requires

\[O(n \cdot 2^k) \text{ terms} \]

- k: maximum number of parents of a node.
Conditional Independence

- Suppose we have a joint density with 4 variables.
 \[p(x_0, x_1, x_2, x_3) \]

 - For example, 4 subsequent words in a sentence:
 \[x_0 = \text{"Machine"}, \quad x_1 = \text{"learning"}, \quad x_2 = \text{"is"}, \quad x_3 = \text{"fun"} \]

- The product rule tells us that we can rewrite the joint density:
 \[
 p(x_0, x_1, x_2, x_3) = p(x_3 | x_0, x_1, x_2) p(x_0, x_1, x_2) \\
 = p(x_3 | x_0, x_1, x_2) p(x_2 | x_0, x_1) p(x_0, x_1) \\
 = p(x_3 | x_0, x_1, x_2) p(x_2 | x_0, x_1) p(x_1 | x_0) p(x_0)
 \]
Conditional Independence

\[p(x_0, x_1, x_2, x_3) = p(x_3|x_0, x_1, x_2)p(x_2|x_0, x_1)p(x_1|x_0)p(x_0) \]

- Now, we can make a simplifying assumption
 - Only the previous word is what matters, i.e. given the previous word we can forget about every word before the previous one.
 - E.g. \(p(x_3|x_0, x_1, x_2) = p(x_3|x_2) \) or \(p(x_2|x_0, x_1) = p(x_2|x_1) \)
 - Such assumptions are called conditional independence assumptions.

⇒ It’s the edges that are missing in the graph that are important! They encode the simplifying assumptions we make.
Conditional Independence

- The notion of conditional independence means that
 - Given a certain variable, other variables become independent.
 - More concretely here:
 - This means that \(x_3 \) is conditionally independent from \(x_0 \) and \(x_1 \) given \(x_2 \):
 \[
p(x_3 | x_0, x_1, x_2) = p(x_3 | x_2)
 \]
 - This means that \(x_2 \) is conditionally independent from \(x_0 \) given \(x_1 \):
 \[
p(x_2 | x_0, x_1) = p(x_2 | x_1)
 \]
 - Why is this?
 \[
p(x_0, x_2 | x_1) = p(x_2 | x_0, x_1)p(x_0 | x_1)
 = p(x_2 | x_1)p(x_0 | x_1)
 \]
 independent given \(x_1 \)
Conditional Independence - Notation

• X is conditionally independent of Y given V
 ➢ Equivalence: $X \perp Y|V \iff p(X|Y, V) = p(X|V)$
 ➢ Also: $X \perp Y|V \iff p(X, Y|V) = p(X|V)p(Y|V)$
 ➢ Special case: Marginal Independence

$$X \perp Y \iff X \perp Y|\emptyset \iff p(X, Y) = p(X)p(Y)$$

➢ Often, we are interested in conditional independence between sets of variables:

$$\mathcal{X} \perp \mathcal{Y}|\mathcal{V} \iff \{X \perp Y|\mathcal{V}, \ \forall X \in \mathcal{X} \text{ and } \forall Y \in \mathcal{Y}\}$$
Conditional Independence

- Directed graphical models are not only useful...
 - Because the joint probability is factorized into a product of simpler conditional distributions.
 - But also, because we can read off the conditional independence of variables.

- Let’s discuss this in more detail...
First Case: “Tail-to-tail”

- Divergent model

- Are a and b independent?

- Marginalize out c:

 $$p(a, b) = \sum_c p(a, b, c) = \sum_c p(a|c)p(b|c)p(c)$$

- In general, this is not equal to $p(a)p(b)$.
 \[\Rightarrow\text{ The variables are not independent.}\]
First Case: “Tail-to-tail”

• What about now?

- Are \(a \) and \(b \) independent?

- Marginalize out \(c \):

\[
p(a, b) = \sum_c p(a, b, c) = \sum_c p(a | c)p(b)p(c) = p(a)p(b)
\]

⇒ If there is no undirected connection between two variables, then they are independent.
First Case: Divergent ("Tail-to-Tail")

- Let’s return to the original graph, but now assume that we observe the value of c:

 The conditional probability is given by:

 $$ p(a, b | c) = \frac{p(a, b, c)}{p(c)} = \frac{p(a | c)p(b | c)p(c)}{p(c)} = p(a | c)p(b | c) $$

 ⇒ If c becomes known, the variables a and b become conditionally independent.
Second Case: Chain ("Head-to-Tail")

- Let us consider a slightly different graphical model:

 ![Chain graph]

 Are \(a \) and \(b \) independent? **No!**

 \[
 p(a, b) = \sum_c p(a,b,c) = \sum_c p(b|c)p(c|a)p(a) = p(b|a)p(a)
 \]

- If \(c \) becomes known, are \(a \) and \(b \) **conditionally independent**? **Yes!**

 \[
 p(a, b|c) = \frac{p(a,b,c)}{p(c)} = \frac{p(a)p(c|a)p(b|c)}{p(c)} = p(a|c)p(b|c)
 \]

Slide credit: Bernt Schiele, Stefan Roth
Third Case: Convergent (“Head-to-Head”)

- Let’s look at a final case: Convergent graph

 Are \(a\) and \(b\) independent? **YES!**

 \[
 p(a, b) = \sum_c p(a, b, c) = \sum_c p(c|a, b)p(a)p(b) = p(a)p(b)
 \]

 - This is very different from the previous cases.
 - Even though \(a\) and \(b\) are connected, they are independent.
Third Case: Convergent ("Head-to-Head")

- Now we assume that \(c \) is observed.

\[
p(a, b | c) = \frac{p(a, b, c)}{p(c)} = \frac{p(a)p(b)p(c | a, b)}{p(c)}
\]

- Are \(a \) and \(b \) independent? NO!
- In general, they are not conditionally independent.
 - This also holds when any of \(c \)'s descendants is observed.
- This case is the opposite of the previous cases!
Summary: Conditional Independence

- **Three cases**
 - **Divergent** ("Tail-to-Tail")
 - Conditional independence when \(c \) is observed.
 - **Chain** ("Head-to-Tail")
 - Conditional independence when \(c \) is observed.
 - **Convergent** ("Head-to-Head")
 - Conditional independence when neither \(c \), nor any of its descendants are observed.
D-Separation

• Definition
 - Let \(A, B, \) and \(C \) be non-intersecting subsets of nodes in a directed graph.
 - A path from \(A \) to \(B \) is \textit{blocked} if it contains a node such that either
 - The arrows on the path meet either head-to-tail or tail-to-tail at the node, and the node is in the set \(C \), or
 - The arrows meet head-to-head at the node, and neither the node, nor any of its descendants, are in the set \(C \).
 - If all paths from \(A \) to \(B \) are blocked, \(A \) is said to be \textit{d-separated} from \(B \) by \(C \).

• If \(A \) is d-separated from \(B \) by \(C \), the joint distribution over all variables in the graph satisfies \(A \perp B \mid C \).
 - Read: “\(A \) is conditionally independent of \(B \) given \(C \)”
D-Separation: Example

- Exercise: What is the relationship between a and b?

\[a \not\perp b \mid c \quad \text{and} \quad a \perp b \mid f \]
Explaining Away

- Let’s look at Holmes’ example again:

 Observation “Holmes’ lawn is wet” increases the probability both of “Rain” as well as “Sprinkler”.

Slide adapted from Bernt Schiele, Stefan Roth
Explaining Away

Let’s look at Holmes’ example again:

- Observation “Holmes’ lawn is wet” increases the probability both of “Rain” as well as “Sprinkler”.
- Also observing “Neighbor’s lawn is wet” decreases the probability for “Sprinkler”.

⇒ The “Sprinkler” is explained away.
Topics of This Lecture

- Graphical Models
 - Introduction
- Directed Graphical Models (Bayesian Networks)
 - Notation
 - Conditional probabilities
 - Computing the joint probability
 - Factorization
 - Conditional Independence
 - D-Separation
 - Explaining away

- Outlook: Inference in Graphical Models
 - Efficiency considerations
Outlook: Inference in Graphical Models

• Inference
 - Evaluate the probability distribution over some set of variables, given the values of another set of variables (=observations).

• Example:
 \[p(A, B, C, D, E) = p(A)p(B)p(C|A, B)p(D|B, C)p(E|C, D) \]
 - How can we compute \(p(A|C = c) \) ?

 - Idea:
 \[p(A|C = c) = \frac{p(A, C = c)}{p(C = c)} \]
Inference in Graphical Models

- **Computing** $p(A|C = c)$...
 - We know
 \[p(A, B, C, D, E) = p(A)p(B)p(C|A, B)p(D|B, C)p(E|C, D) \]
 - Assume each variable is binary.

- **Naïve approach:**
 \[
 p(A, C = c) = \sum_{B, D, E} p(A, B, C = c, D, E)
 \text{ \hspace{1cm} 16 operations}
 \]
 \[
 p(C = c) = \sum_A p(A, C = c)
 \text{ \hspace{1cm} 2 operations}
 \]
 \[
 p(A|C = c) = \frac{p(A, C = c)}{p(C = c)}
 \text{ \hspace{1cm} 2 operations}
 \]

Total: $16 + 2 + 2 = 20$ operations
Inference in Graphical Models

- We know
 \[p(A, B, C, D, E) = p(A)p(B)p(C|A, B)p(D|B, C)p(E|C, D) \]

- More efficient method for \(p(A|C = c) \):
 \[
p(A|C = c) = \sum_{B,D,E} p(A)p(B)p(C = c|A, B)p(D|B, C = c)p(E|C = c, D)
 \]
 \[
 = \sum_{B} p(A)p(B)p(C = c|A, B) \sum_{D} p(D|B, C = c) \sum_{E} p(E|C = c, D)
 \]
 \[
 = \sum_{B} p(A)p(B)p(C = c|A, B)
 \]
 Total: 4 operations

- Rest stays the same:

 Couldn’t we have got this result easier?
Inference in Graphical Models

- Consider the network structure
 - Using what we know about conditional independence...

- Conditional independence properties:
 - \(C \) blocks all paths from \(A \) to \(E \) and \(D \) (“head-to-tail”).
 \[\Rightarrow A \text{ is conditionally independent of } E \text{ and } D \text{ given } C. \]
 - \(C \) opens the path from \(A \) to \(B \) (“tail-to-tail”).
 \[\Rightarrow A \text{ is conditionally dependent of } B \text{ given } C. \]

\[\Rightarrow \text{When querying for } p(A|C = c), \text{ we only need to take into account } A, B, \text{ and } C = c. \]

\[p(A|C = c) = \sum_B p(A)p(B)p(C = c|A, B) \]
Summary

• Graphical models
 - Marriage between probability theory and graph theory.
 - Give insights into the structure of a probabilistic model.
 - Direct dependencies between variables.
 - Conditional independence
 - Allow for efficient factorization of the joint.
 - Factorization can be read off directly from the graph.
 - We will use this for efficient inference algorithms!
 - Capability to explain away hypotheses by new evidence.

• Next week
 - Undirected graphical models (Markov Random Fields)
 - Efficient methods for performing exact inference.
References and Further Reading

- A thorough introduction to Graphical Models in general and Bayesian Networks in particular can be found in Chapter 8 of Bishop’s book.

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006