Machine Learning - Lecture 19

Repetition

21.07.2009

Bastian Leibe
RWTH Aachen
http://www.umic.rwth-aachen.de/multimedia

leibe@umic.rwth-aachen.de
Announcements

- Today, I’ll summarize the most important points from the lecture.
 - It is an opportunity for you to ask questions...
 - ...or get additional explanations about certain topics.
 - So, please do ask.

- Today’s slides are intended as an index for the lecture.
 - But they are not complete, won’t be sufficient as only tool.
 - Also look at the exercises - they often explain algorithms in detail.

- Oral exam procedure
 - B.Sc./M.Sc.: 4 questions/30 mins, will have to answer 3 of them.
 - Diplom V3: 3 questions/15 mins, will have to answer 2 of them.
 - Diplom V4: 3 questions/20 mins, will have to answer 3 of them.

B. Leibe
Course Outline

- **Fundamentals**
 - Bayes Decision Theory
 - Probability Density Estimation
 - Mixture Models and EM

- **Discriminative Approaches**
 - Linear Discriminant Functions
 - Statistical Learning Theory & SVMs
 - Boosting, Decision Trees

- **Generative Models**
 - Bayesian Networks
 - Markov Random Fields

- **Regression Problems**
 - Gaussian Processes
Recap: Bayes Decision Theory

\[
p(x \mid a) \\
p(x \mid b)
\]

\[
p(x \mid a) \, p(a) \\
p(x \mid b) \, p(b)
\]

\[
\text{Decision boundary}
\]

\[
p(a \mid x) \\
p(b \mid x)
\]

\[
\text{Posterior} = \frac{\text{Likelihood} \times \text{Prior}}{\text{Normalization Factor}}
\]
Recap: Bayes Decision Theory

• Optimal decision rule
 - Decide for C_1 if
 \[p(C_1 | x) > p(C_2 | x) \]
 - This is equivalent to
 \[p(x | C_1) p(C_1) > p(x | C_2) p(C_2) \]
 - Which is again equivalent to (Likelihood-Ratio test)
 \[\frac{p(x | C_1)}{p(x | C_2)} > \frac{p(C_2)}{p(C_1)} \]
 Decision threshold θ

Slide credit: Bernt Schiele
Recap: Bayes Decision Theory

- Decision regions: \mathcal{R}_1, \mathcal{R}_2, \mathcal{R}_3, ...
Recap: Classifying with Loss Functions

- In general, we can formalize this by introducing a loss matrix L_{kj}

$$L_{kj} = \text{loss for decision } C_j \text{ if truth is } C_k.$$

- Example: cancer diagnosis

\[
L_{\text{cancer diagnosis}} = \begin{pmatrix}
0 & 1000 \\
1 & 0
\end{pmatrix}
\]
Recap: Minimizing the Expected Loss

• Optimal solution minimizes the loss.
 ➢ But: loss function depends on the true class, which is unknown.

• Solution: Minimize the expected loss

\[
\mathbb{E}[L] = \sum_k \sum_j \int_{\mathcal{R}_j} L_{kj} p(x, C_k) \, dx
\]

• This can be done by choosing the regions \(\mathcal{R}_j \) such that

\[
\mathbb{E}[L] = \sum_k L_{kj} p(C_k|x)
\]

which is easy to do once we know the posterior class probabilities \(p(C_k|x) \).
Recap: The Reject Option

- Classification errors arise from regions where the largest posterior probability \(p(C_k | x) \) is significantly less than 1.
 - These are the regions where we are relatively uncertain about class membership.
 - For some applications, it may be better to reject the automatic decision entirely in such a case and e.g. consult a human expert.

B. Leibe

Image source: C.M. Bishop, 2006
Course Outline

- **Fundamentals**
 - Bayes Decision Theory
 - Probability Density Estimation
 - Mixture Models and EM

- **Discriminative Approaches**
 - Linear Discriminant Functions
 - Statistical Learning Theory & SVMs
 - Boosting, Decision Trees

- **Generative Models**
 - Bayesian Networks
 - Markov Random Fields

- **Regression Problems**
 - Gaussian Processes
Recap: Gaussian (or Normal) Distribution

- **One-dimensional case**
 - Mean μ
 - Variance σ^2

$$
\mathcal{N}(x|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma}} \exp \left\{ -\frac{(x - \mu)^2}{2\sigma^2} \right\}
$$

- **Multi-dimensional case**
 - Mean μ
 - Covariance Σ

$$
\mathcal{N}(\mathbf{x}|\mu, \Sigma) = \frac{1}{(2\pi)^{D/2} |\Sigma|^{1/2}} \exp \left\{ -\frac{1}{2} (\mathbf{x} - \mu)^T \Sigma^{-1} (\mathbf{x} - \mu) \right\}
$$

Image source: C.M. Bishop, 2006
Recap: Maximum Likelihood Approach

- **Computation of the likelihood**
 - Single data point: $p(x_n|\theta)$
 - Assumption: all data points $X = \{x_1, \ldots, x_n\}$ are independent

$$L(\theta) = p(X|\theta) = \prod_{n=1}^{N} p(x_n|\theta)$$

- Log-likelihood

$$E(\theta) = -\ln L(\theta) = -\sum_{n=1}^{N} \ln p(x_n|\theta)$$

- **Estimation of the parameters θ (Learning)**
 - **Maximize the likelihood** (= minimize the negative log-likelihood)
 - \Rightarrow Take the derivative and set it to zero.

$$\frac{\partial}{\partial \theta} E(\theta) = -\sum_{n=1}^{N} \frac{\partial}{\partial \theta} p(x_n|\theta) \frac{1}{p(x_n|\theta)} = 0$$

Slide credit: Bernt Schiele
Recap: Bayesian Learning Approach

- Bayesian view:
 - Consider the parameter vector θ as a random variable.
 - When estimating the parameters, what we compute is

\[
p(x | X) = \int p(x, \theta | X) d\theta
\]

Assumption: given θ, this doesn’t depend on X anymore

\[
p(x, \theta | X) = p(x | \theta, X)p(\theta | X)
\]

\[
p(x | X) = \int p(x | \theta)p(\theta | X) d\theta
\]

This is entirely determined by the parameter θ (i.e. by the parametric form of the pdf).
Recap: Bayesian Learning Approach

• Discussion

\[p(x|X) = \int \frac{p(x|\theta)L(\theta)p(\theta)}{\int L(\theta)p(\theta)d\theta} d\theta \]

Likelihood of the parametric form \(\theta \) given the data set \(X \).

Estimate for \(x \) based on parametric form \(\theta \)

Prior for the parameters \(\theta \)

Normalization: integrate over all possible values of \(\theta \)

- The more uncertain we are about \(\theta \), the more we average over all possible parameter values.

B. Leibe
Recap: Histograms

- **Basic idea:**
 - Partition the data space into distinct bins with widths Δ_i and count the number of observations, n_i, in each bin.
 \[p_i = \frac{n_i}{N \Delta_i} \]
 - Often, the same width is used for all bins, $\Delta_i = \Delta$.
 - This can be done, in principle, for any dimensionality D...

...but the required number of bins grows exponentially with D!
Recap: Kernel Density Estimation

- Approximation formula:
 \[p(x) \approx \frac{K}{NV} \]

- Kernel methods
 - Place a kernel window at location \(x \) and count how many data points fall inside it.

- K-Nearest Neighbor
 - Increase the volume \(V \) until the \(K \) next data points are found.

Kernel Methods

K-Nearest Neighbor

Slide adapted from Bernt Schiele
Course Outline

• Fundamentals
 - Bayes Decision Theory
 - Probability Density Estimation
 - Mixture Models and EM

• Discriminative Approaches
 - Linear Discriminant Functions
 - Statistical Learning Theory & SVMs
 - Boosting, Decision Trees

• Generative Models
 - Bayesian Networks
 - Markov Random Fields

• Regression Problems
 - Gaussian Processes
Recap: Mixture of Gaussians (MoG)

- “Generative model”

\[p(j) = \pi_j \]

“Weight” of mixture component

\[p(x) \]

Mixture component

\[p(x|\theta_j) \]

Mixture density

\[p(x|\theta) = \sum_{j=1}^{M} p(x|\theta_j)p(j) \]
Recap: MoG - Iterative Strategy

- Assuming we knew the values of the hidden variable...

\[
\begin{align*}
\mu_1 &= \frac{\sum_{n=1}^{N} h(j = 1|x_n)x_n}{\sum_{i=1}^{N} h(j = 1|x_n)} \\
\mu_2 &= \frac{\sum_{n=1}^{N} h(j = 2|x_n)x_n}{\sum_{i=1}^{N} h(j = 2|x_n)}
\end{align*}
\]

ML for Gaussian #1

\[h(j = 1|x_n) = \begin{bmatrix} 1 & 111 \end{bmatrix}\]

ML for Gaussian #2

\[h(j = 2|x_n) = \begin{bmatrix} 0 & 000 \end{bmatrix}\]
Recap: MoG - Iterative Strategy

- Assuming we knew the mixture components...

\[f(x) \]

\[p(j = 1|x) \quad \text{assumed known} \]

\[p(j = 2|x) \]

- Bayes decision rule: Decide \(j = 1 \) if

\[p(j = 1|x_n) > p(j = 2|x_n) \]
Recap: K-Means Clustering

- Iterative procedure
 1. Initialization: pick K arbitrary centroids (cluster means)
 2. Assign each sample to the closest centroid.
 3. Adjust the centroids to be the means of the samples assigned to them.
 4. Go to step 2 (until no change)
- Algorithm is guaranteed to converge after finite #iterations.
 - Local optimum
 - Final result depends on initialization.
Recap: EM Algorithm

- **Expectation-Maximization (EM) Algorithm**
 - **E-Step**: softly assign samples to mixture components
 \[
 \gamma_j(x_n) \leftarrow \frac{\pi_j \mathcal{N}(x_n | \mu_j, \Sigma_j)}{\sum_{k=1}^N \pi_k \mathcal{N}(x_n | \mu_k, \Sigma_k)} \quad \forall j = 1, \ldots, K, \ n = 1, \ldots, N
 \]
 - **M-Step**: re-estimate the parameters (separately for each mixture component) based on the soft assignments
 \[
 \hat{\pi}^{\text{new}}_j \leftarrow \frac{\sum_{n=1}^N \gamma_j(x_n)}{N}
 \]
 \[
 \hat{\mu}^{\text{new}}_j \leftarrow \frac{1}{\hat{N}_j} \sum_{n=1}^N \gamma_j(x_n) x_n
 \]
 \[
 \hat{\Sigma}^{\text{new}}_j \leftarrow \frac{1}{\hat{N}_j} \sum_{n=1}^N \gamma_j(x_n) (x_n - \hat{\mu}^{\text{new}}_j) (x_n - \hat{\mu}^{\text{new}}_j)^T
 \]
Course Outline

• Fundamentals
 - Bayes Decision Theory
 - Probability Density Estimation
 - Mixture Models and EM

• Discriminative Approaches
 - Linear Discriminant Functions
 - Statistical Learning Theory & SVMs
 - Boosting, Decision Trees

• Generative Models
 - Bayesian Networks
 - Markov Random Fields

• Regression Problems
 - Gaussian Processes
Recap: Linear Discriminant Functions

- **Basic idea**
 - Directly encode decision boundary
 - Minimize misclassification probability directly.

- **Linear discriminant functions**
 \[y(x) = w^T x + w_0 \]
 - Weight vector
 - "Bias" (= threshold)
 - \(w, w_0 \) define a hyperplane in \(\mathbb{R}^D \).
 - If a data set can be perfectly classified by a linear discriminant, then we call it **linearly separable**.
Recap: Least-Squares Classification

- Simplest approach
 - Directly try to minimize the sum-of-squares error
 \[
 E(w) = \sum_{n=1}^{N} (y(x_n; w) - t_n)^2
 \]
 \[
 E_D(\tilde{W}) = \frac{1}{2} \text{Tr} \left\{ (\tilde{X}\tilde{W} - T)^T (\tilde{X}\tilde{W} - T) \right\}
 \]
 - Setting the derivative to zero yields
 \[
 \tilde{W} = (\tilde{X}^T\tilde{X})^{-1}\tilde{X}^T T = \tilde{X}^\dagger T
 \]
 - We then obtain the discriminant function as
 \[
 y(x) = \tilde{W}^T \tilde{x} = T^T \left(\tilde{X}^\dagger \right)^T \tilde{x}
 \]
 - \(\Rightarrow\) Exact, closed-form solution for the discriminant function parameters.
Recap: Problems with Least Squares

- Least-squares is very sensitive to outliers!
 - The error function penalizes predictions that are "too correct".

B. Leibe

Image source: C.M. Bishop, 2006
Recap: Generalized Linear Models

- Generalized linear model
 \[y(x) = g(w^T x + w_0) \]
 - \(g(\cdot) \) is called an activation function and may be nonlinear.
 - The decision surfaces correspond to
 \[y(x) = \text{const.} \iff w^T x + w_0 = \text{const}. \]
 - If \(g \) is monotonous (which is typically the case), the resulting decision boundaries are still linear functions of \(x \).

- Advantages of the non-linearity
 - Can be used to bound the influence of outliers and “too correct” data points.
 - When using a sigmoid for \(g(\cdot) \), we can interpret the \(y(x) \) as posterior probabilities.

\[g(a) \equiv \frac{1}{1 + \exp(-a)} \]

B. Leibe
Recap: Linear Separability

- Up to now: restrictive assumption
 - Only consider linear decision boundaries

- Classical counterexample: XOR
Recap: Extension to Nonlinear Basis Fcts.

- **Generalization**
 - Transform vector \(\mathbf{x} \) with \(M \) nonlinear basis functions \(\phi_j(\mathbf{x}) \):
 \[
 y_k(\mathbf{x}) = \sum_{j=1}^{M} w_{ki} \phi_j(\mathbf{x}) + w_{k0}
 \]

- **Advantages**
 - Transformation allows non-linear decision boundaries.
 - By choosing the right \(\phi_j \), every continuous function can (in principle) be approximated with arbitrary accuracy.

- **Disadvantage**
 - The error function can in general no longer be minimized in closed form.
 \(\Rightarrow \) Minimization with Gradient Descent

B. Leibe
Recap: Fisher’s Linear Discriminant Analysis

- Classification as dim. reduction
- Maximize distance between classes
- Minimize distance within a class

Criterion:
\[J(w) = \frac{w^T S_B w}{w^T S_W w} \]

\(S_B \) ... between-class scatter matrix
\(S_W \) ... within-class scatter matrix

- In the 2-class case, the optimal solution for \(w \) can be obtained as:
\[w \propto S_W^{-1}(m_2 - m_1) \]

- Classification function:
\[y(x) = w^T x + w_0 \]
\[\begin{align*}
\text{Class 1} & \quad \geq 0 \\
\text{Class 2} & \quad < 0
\end{align*} \]
Course Outline

• Fundamentals
 ➢ Bayes Decision Theory
 ➢ Probability Density Estimation
 ➢ Mixture Models and EM

• Discriminative Approaches
 ➢ Linear Discriminant Functions
 ➢ Statistical Learning Theory & SVMs
 ➢ Boosting, Decision Trees

• Generative Models
 ➢ Bayesian Networks
 ➢ Markov Random Fields

• Regression Problems
 ➢ Gaussian Processes
Recap: Generalization and Overfitting

- Goal: predict class labels of new observations
 - Train classification model on limited training set.
 - The further we optimize the model parameters, the more the training error will decrease.
 - However, at some point the test error will go up again.
 \[\Rightarrow \text{Overfitting to the training set!} \]

B. Leibe
Recap: Risk

- **Empirical risk**
 - Measured on the training/validation set

 \[R_{emp}(\alpha) = \frac{1}{N} \sum_{i=1}^{N} L(y_i, f(x_i; \alpha)) \]

- **Actual risk (= Expected risk)**
 - Expectation of the error on *all* data.

 \[R(\alpha) = \int L(y_i, f(x; \alpha)) dP_{X,Y}(x, y) \]

 - \(P_{X,Y}(x, y) \) is the probability distribution of \((x, y)\).
 - It is fixed, but typically unknown.
 - \(\Rightarrow \) In general, we can’t compute the actual risk directly!
Recap: Statistical Learning Theory

- Idea
 - Compute an upper bound on the actual risk based on the empirical risk
 \[R(\alpha) \leq R_{emp}(\alpha) + \epsilon(N, p^*, h) \]
 - where

 \(N \): number of training examples

 \(p^* \): probability that the bound is correct

 \(h \): capacity of the learning machine ("VC-dimension")
Recap: VC Dimension

- Vapnik-Chervonenkis dimension
 - Measure for the capacity of a learning machine.

- Formal definition:
 - If a given set of \(\ell \) points can be labeled in all possible \(2^\ell \) ways, and for each labeling, a member of the set \(\{ f(\alpha) \} \) can be found which correctly assigns those labels, we say that the set of points is shattered by the set of functions.

 - The VC dimension for the set of functions \(\{ f(\alpha) \} \) is defined as the maximum number of training points that can be shattered by \(\{ f(\alpha) \} \).
Recap: Upper Bound on the Risk

- Important result (Vapnik 1979, 1995)
 - With probability \((1-\eta)\), the following bound holds

\[
R(\alpha) \leq R_{emp}(\alpha) + \sqrt{\frac{h(\log(2N/h) + 1) - \log(\eta/4)}{N}}
\]

This bound is independent of \(P_{X,Y}(x, y)\)!

- If we know \(h\) (the VC dimension), we can easily compute the risk bound

\[
R(\alpha) \leq R_{emp}(\alpha) + \epsilon(N, p^*, h)
\]
Recap: Structural Risk Minimization

- How can we implement Structural Risk Minimization?
 \[R(\alpha) \leq R_{\text{emp}}(\alpha) + \varepsilon(N, p^*, h) \]

- Classic approach
 - Keep \(\varepsilon(N, p^*, h) \) constant and minimize \(R_{\text{emp}}(\alpha) \).
 - \(\varepsilon(N, p^*, h) \) can be kept constant by controlling the model parameters.

- Support Vector Machines (SVMs)
 - Keep \(R_{\text{emp}}(\alpha) \) constant and minimize \(\varepsilon(N, p^*, h) \).
 - In fact: \(R_{\text{emp}}(\alpha) = 0 \) for separable data.
 - Control \(\varepsilon(N, p^*, h) \) by adapting the VC dimension (controlling the “capacity” of the classifier).

Slide credit: Bernt Schiele
Course Outline

• Fundamentals
 - Bayes Decision Theory
 - Probability Density Estimation

• Discriminative Approaches
 - Linear Discriminant Functions
 - Statistical Learning Theory
 - Support Vector Machines
 - Boosting, Decision Trees

• Generative Models
 - Bayesian Networks
 - Markov Random Fields

• Regression Problems
 - Gaussian Processes
Recap: Support Vector Machine (SVM)

• Basic idea
 ➢ The SVM tries to find a classifier which maximizes the margin between pos. and neg. data points.
 ➢ Up to now: consider linear classifiers
 \[w^T x + b = 0 \]

• Formulation as a convex optimization problem
 ➢ Find the hyperplane satisfying
 \[\arg \min_{w,b} \frac{1}{2} \|w\|^2 \]
 under the constraints
 \[t_n (w^T x_n + b) \geq 1 \quad \forall n \]
 based on training data points \(x_n \) and target values \(t_n \in \{-1, 1\} \).
Recap: SVM - Primal Formulation

- **Lagrangian primal form**

\[
L_p = \frac{1}{2} \|w\|^2 - \sum_{n=1}^{N} a_n \left\{ t_n (w^T x_n + b) - 1 \right\}
\]

\[
= \frac{1}{2} \|w\|^2 - \sum_{n=1}^{N} a_n \left\{ t_n y(x_n) - 1 \right\}
\]

- **The solution of** \(L_p \) **needs to fulfill the KKT conditions**
 - Necessary and sufficient conditions

\[
a_n \geq 0
\]
\[
t_n y(x_n) - 1 \geq 0
\]
\[
a_n \{ t_n y(x_n) - 1 \} = 0
\]

KKT:
\[
\lambda \geq 0
\]
\[
f(x) \geq 0
\]
\[
\lambda f(x) = 0
\]

B. Leibe
Recap: SVM - Solution

- Solution for the hyperplane
 - Computed as a linear combination of the training examples
 \[\mathbf{w} = \sum_{n=1}^{N} a_n t_n \mathbf{x}_n \]
 - Sparse solution: \(a_n \neq 0 \) only for some points, the support vectors
 \Rightarrow Only the SVs actually influence the decision boundary!
 - Compute \(b \) by averaging over all support vectors:
 \[b = \frac{1}{NS} \sum_{n \in S} \left(t_n - \sum_{m \in S} a_m t_m \mathbf{x}_m^T \mathbf{x}_n \right) \]
Recap: SVM - Support Vectors

- The training points for which $a_n > 0$ are called “support vectors”.

- Graphical interpretation:
 - The support vectors are the points on the margin.
 - They define the margin and thus the hyperplane.

⇒ All other data points can be discarded!
Recap: SVM - Dual Formulation

• Maximize

\[L_d(a) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m (x_m^T x_n) \]

under the conditions

\[a_n \geq 0 \quad \forall n \]

\[\sum_{n=1}^{N} a_n t_n = 0 \]

• Comparison

- \(L_d \) is equivalent to the primal form \(L_p \), but only depends on \(a_n \).
- \(L_p \) scales with \(O(D^3) \).
- \(L_d \) scales with \(O(N^3) \) - in practice between \(O(N) \) and \(O(N^2) \).

Slide adapted from Bernt Schiele
Recap: SVM for Non-Separable Data

- Slack variables
 - One slack variable $\xi_n \geq 0$ for each training data point.

- Interpretation
 - $\xi_n = 0$ for points that are on the correct side of the margin.
 - $\xi_n = |t_n - y(x_n)|$ for all other points.

- We do not have to set the slack variables ourselves!
 \Rightarrow They are jointly optimized together with w.
Recap: SVM - New Dual Formulation

• New SVM Dual: Maximize

\[L_d(a) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m (x_m^T x_n) \]

under the conditions

\[0 \leq a_n \leq C \]
\[\sum_{n=1}^{N} a_n t_n = 0 \]

• This is again a quadratic programming problem
 \[\Rightarrow \text{Solve as before...} \]
Recap: Nonlinear SVMs

- General idea: The original input space can be mapped to some higher-dimensional feature space where the training set is separable:

\[\Phi: x \rightarrow \phi(x) \]
Recap: The Kernel Trick

- Important observation
 - $\phi(x)$ only appears in the form of dot products $\phi(x)^T \phi(y)$:
 \[
y(x) = w^T \phi(x) + b = \sum_{n=1}^{N} a_n t_n \phi(x_n)^T \phi(x) + b
 \]

- Define a so-called kernel function $k(x, y) = \phi(x)^T \phi(y)$.

- Now, in place of the dot product, use the kernel instead:
 \[
y(x) = \sum_{n=1}^{N} a_n t_n k(x_n, x) + b
 \]

- The kernel function *implicitly* maps the data to the higher-dimensional space (without having to compute $\phi(x)$ explicitly)!
Recap: Kernels Fulfilling Mercer’s Condition

- **Polynomial kernel**
 \[k(x, y) = (x^T y + 1)^p \]

- **Radial Basis Function kernel**
 \[k(x, y) = \exp \left\{ -\frac{(x - y)^2}{2\sigma^2} \right\} \]
 e.g. Gaussian

- **Hyperbolic tangent kernel**
 \[k(x, y) = \tanh(\kappa x^T y + \delta) \]
 e.g. Sigmoid

- And many, many more, including kernels on graphs, strings, and symbolic data...
Recap: Nonlinear SVM - Dual Formulation

- SVM Dual: Maximize

\[L_d(a) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m k(x_m, x_n) \]

under the conditions

\[0 \leq a_n \leq C \]
\[\sum_{n=1}^{N} a_n t_n = 0 \]

- Classify new data points using

\[y(x) = \sum_{n=1}^{N} a_n t_n k(x_n, x) + b \]

see Exercise 2.5

B. Leibe
Course Outline

- Fundamentals
 - Bayes Decision Theory
 - Probability Density Estimation

- Discriminative Approaches
 - Linear Discriminant Functions
 - Statistical Learning Theory
 - Support Vector Machines
 - Boosting, Decision Trees

- Generative Models
 - Bayesian Networks
 - Markov Random Fields

- Regression Problems
 - Gaussian Processes
Recap: Classifier Combination

- We’ve seen already a variety of different classifiers
 - k-NN
 - Bayes classifiers
 - Fisher’s Linear Discriminant
 - SVMs

- Each of them has their strengths and weaknesses...
 - Can we improve performance by combining them?
Recap: Stacking

• Idea
 - Learn L classifiers (based on the training data)
 - Find a meta-classifier that takes as input the output of the L first-level classifiers.

• Example
 - Learn L classifiers with leave-one-out.
 - Interpret the prediction of the L classifiers as L-dimensional feature vector.
 - Learn “level-2” classifier based on the examples generated this way.
Recap: Stacking

• Why can this be useful?
 - Simplicity
 - We may already have several existing classifiers available.
 ⇒ No need to retrain those, they can just be combined with the rest.
 - Correlation between classifiers
 - The combination classifier can learn the correlation.
 ⇒ Better results than simple Naïve Bayes combination.
 - Feature combination
 - E.g. combine information from different sensors or sources (vision, audio, acceleration, temperature, radar, etc.).
 - We can get good training data for each sensor individually, but data from all sensors together is rare.
 ⇒ Train each of the L classifiers on its own input data.
 Only combination classifier needs to be trained on combined input.
Recap: Bayesian Model Averaging

- **Model Averaging**
 - Suppose we have H different models $h = 1, \ldots, H$ with prior probabilities $p(h)$.
 - Construct the *marginal distribution* over the data set
 \[
 p(X) = \sum_{h=1}^{H} p(X|h)p(h)
 \]

- **Average error of committee**
 \[
 E_{COM} = \frac{1}{M} E_{AV}
 \]
 - This suggests that the average error of a model can be reduced by a factor of M simply by averaging M versions of the model!
 - Unfortunately, this assumes that the errors are all *uncorrelated*. In practice, they will typically be highly correlated.
Recap: Boosting (Schapire 1989)

- **Algorithm**: (3-component classifier)
 1. **Sample** $N_1 < N$ training examples (*without replacement*) from training set \mathcal{D} to get set \mathcal{D}_1.
 - Train weak classifier C_1 on \mathcal{D}_1.
 2. **Sample** $N_2 < N$ training examples (*without replacement*), half of which were misclassified by C_1 to get set \mathcal{D}_2.
 - Train weak classifier C_2 on \mathcal{D}_2.
 3. **Choose all data in** \mathcal{D} **on which** C_1 **and** C_2 **disagree** to get set \mathcal{D}_3.
 - Train weak classifier C_3 on \mathcal{D}_3.
 4. Get the final classifier output by majority voting of C_1, C_2, and C_3.
 (Recursively apply the procedure on C_1 to C_3)

B. Leibe

Image source: Duda, Hart, Stork, 2001
Recap: AdaBoost - “Adaptive Boosting”

• **Main idea**
 - [Freund & Schapire, 1996]
 - Instead of resampling, reweight misclassified training examples.
 - Increase the chance of being selected in a sampled training set.
 - Or increase the misclassification cost when training on the full set.

• **Components**
 - $h_m(x)$: “weak” or base classifier
 - Condition: <50% training error over any distribution
 - $H(x)$: “strong” or final classifier

• **AdaBoost:**
 - Construct a strong classifier as a thresholded linear combination of the weighted weak classifiers:
 $$H(x) = \text{sign} \left(\sum_{m=1}^{M} \alpha_m h_m(x) \right)$$
Recap: AdaBoost - Intuition

Consider a 2D feature space with positive and negative examples.

Each weak classifier splits the training examples with at least 50% accuracy.

Examples misclassified by a previous weak learner are given more emphasis at future rounds.
Recap: AdaBoost - Intuition

Weights Increased

Weak Classifier 2

Weak Classifier 1

Figure adapted from Freund & Schapire
Recap: AdaBoost - Intuition

Final classifier is combination of the weak classifiers

Slide credit: Kristen Grauman

B. Leibe
Recap: AdaBoost - Algorithm

1. Initialization: Set $w_n^{(1)} = \frac{1}{N}$ for $n = 1, \ldots, N$.

2. For $m = 1, \ldots, M$ iterations
 a) Train a new weak classifier $h_m(x)$ using the current weighting coefficients $W^{(m)}$ by minimizing the weighted error function
 $$J_m = \sum_{n=1}^{N} w_n^{(m)} I(h_m(x) \neq t_n)$$
 \[I(A) = \begin{cases}
1, & \text{if } A \text{ is true} \\
0, & \text{else}
\end{cases}\]

 b) Estimate the weighted error of this classifier on X:
 $$\epsilon_m = \frac{\sum_{n=1}^{N} w_n^{(m)} I(h_m(x) \neq t_n)}{\sum_{n=1}^{N} w_n^{(m)}}$$

 c) Calculate a weighting coefficient for $h_m(x)$:
 $$\alpha_m = \ln \left(\frac{1 - \epsilon_m}{\epsilon_m} \right)$$

 d) Update the weighting coefficients:
 $$w_n^{(m+1)} = w_n^{(m)} \exp \{\alpha_m I(h_m(x_n) \neq t_n)\}$$
Recap: Comparing Error Functions

- Ideal misclassification error function
- “Hinge error” used in SVMs
- Exponential error function
 - Continuous approximation to ideal misclassification function.
 - Sequential minimization leads to simple AdaBoost scheme.
 - Disadvantage: exponential penalty for large negative values!
 ⇒ Less robust to outliers or misclassified data points!

Image source: Bishop, 2006
Recap: Comparing Error Functions

- Ideal misclassification error function
- “Hinge error” used in SVMs
- Exponential error function
- “Cross-entropy error” \[E = - \sum \{ t_n \ln y_n + (1 - t_n) \ln (1 - y_n) \} \]
 - Similar to exponential error for \(z > 0 \).
 - Only grows linearly with large negative values of \(z \).
 \[\Rightarrow \text{Make AdaBoost more robust by switching} \Rightarrow \text{“GentleBoost”} \]

B. Leibe

Image source: Bishop, 2006
Course Outline

• Fundamentals
 ➢ Bayes Decision Theory
 ➢ Probability Density Estimation

• Discriminative Approaches
 ➢ Linear Discriminant Functions
 ➢ Statistical Learning Theory
 ➢ Support Vector Machines
 ➢ Boosting, Decision Trees

• Generative Models
 ➢ Bayesian Networks
 ➢ Markov Random Fields

• Regression Problems
 ➢ Gaussian Processes

B. Leibe
Recap: Decision Trees

- **Example:**
 - "Classify Saturday mornings according to whether they’re suitable for playing tennis."

B. Leibe

Recap: CART Framework

- Six general questions
 1. Binary or multi-valued problem?
 - I.e. how many splits should there be at each node?
 2. Which property should be tested at a node?
 - I.e. how to select the query attribute?
 3. When should a node be declared a leaf?
 - I.e. when to stop growing the tree?
 4. How can a grown tree be simplified or pruned?
 - Goal: reduce overfitting.
 5. How to deal with impure nodes?
 - I.e. when the data itself is ambiguous.
 6. How should missing attributes be handled?
Recap: Picking a Good Splitting Feature

- **Goal**
 - Select the query (=split) that decreases impurity the most
 \[
 \Delta i(N) = i(N) - P_L i(N_L) - (1 - P_L) i(N_R)
 \]

- **Impurity measures**
 - **Entropy impurity (information gain):**
 \[
 i(N) = - \sum_j p(C_j|N) \log_2 p(C_j|N)
 \]
 - **Gini impurity:**
 \[
 i(N) = \sum_{i \neq j} p(C_i|N)p(C_j|N) = \frac{1}{2} \left[1 - \sum_j p^2(C_j|N) \right]
 \]

Recap: Overfitting Prevention (Pruning)

- Two basic approaches for decision trees
 - **Prepruning**: Stop growing tree as some point during top-down construction when there is no longer sufficient data to make reliable decisions.
 - Cross-validation
 - Chi-square test
 - MDL
 - **Postpruning**: Grow the full tree, then remove subtrees that do not have sufficient evidence.
 - Merging nodes
 - Rule-based pruning

- In practice often preferable to apply post-pruning.
Recap: ID3 Algorithm

• ID3 (Quinlan 1986)
 - One of the first widely used decision tree algorithms.
 - Intended to be used with nominal (unordered) variables
 - Real variables are first binned into discrete intervals.
 - General branching factor
 - Use gain ratio impurity based on entropy (information gain) criterion.

• Algorithm
 - Select attribute a that best classifies examples, assign it to root.
 - For each possible value v_i of a,
 - Add new tree branch corresponding to test $a = v_i$.
 - If example_list(v_i) is empty, add leaf node with most common label in example_list(a).
 - Else, recursively call ID3 for the subtree with attributes $A \setminus a$.

B. Leibe
Recap: C4.5 Algorithm

- **C4.5 (Quinlan 1993)**
 - Improved version with extended capabilities.
 - Ability to deal with real-valued variables.
 - Multiway splits are used with nominal data
 - Using gain ratio impurity based on entropy (information gain) criterion.
 - Heuristics for pruning based on statistical significance of splits.
 - Rule post-pruning

- **Main difference to CART**
 - Strategy for handling missing attributes.
 - When missing feature is queried, C4.5 follows all B possible answers.
 - Decision is made based on all B possible outcomes, weighted by decision probabilities at node N.
Recap: Computational Complexity

• Given
 - Data points \(\{x_1, \ldots, x_N\} \)
 - Dimensionality \(D \)

• Complexity
 - Storage: \(O(N) \)
 - Test runtime: \(O(\log N) \)
 - Training runtime: \(O(DN^2 \log N) \)
 - Most expensive part.
 - Critical step: selecting the optimal splitting point.
 - Need to check \(D \) dimensions, for each need to sort \(N \) data points.
 \[O(DN \log N) \]
Recap: Decision Trees - Summary

- **Properties**
 - Simple learning procedure, fast evaluation.
 - Can be applied to metric, nominal, or mixed data.
 - Often yield interpretable results.
Recap: Decision Trees - Summary

• Limitations
 - Often produce noisy (bushy) or weak (stunted) classifiers.
 - Do not generalize too well.
 - Training data fragmentation:
 - As tree progresses, splits are selected based on less and less data.
 - Overtraining and undertraining:
 - Deep trees: fit the training data well, will not generalize well to new test data.
 - Shallow trees: not sufficiently refined.
 - Stability
 - Trees can be very sensitive to details of the training points.
 - If a single data point is only slightly shifted, a radically different tree may come out!
 ⇒ Result of discrete and greedy learning procedure.
 - Expensive learning step
 - Mostly due to costly selection of optimal split.
Course Outline

- **Fundamentals**
 - Bayes Decision Theory
 - Probability Density Estimation

- **Discriminative Approaches**
 - Linear Discriminant Functions
 - Statistical Learning Theory
 - Support Vector Machines
 - Boosting, Decision Trees, Random Forests

- **Generative Models**
 - Bayesian Networks
 - Markov Random Fields

- **Regression Problems**
 - Gaussian Processes
Recap: Randomized Decision Trees

- Decision trees: main effort on finding good split
 - Training runtime: \(O(DN^2 \log N) \)
 - This is what takes most effort in practice.
 - Especially cumbersome with many attributes (large \(D \)).

- Idea: randomize attribute selection
 - No longer look for globally optimal split.
 - Instead randomly use subset of \(K \) attributes on which to base the split.
 - Choose best splitting attribute e.g. by maximizing the information gain (= reducing entropy):

\[
\Delta E = \sum_{k=1}^{K} \frac{|S_k|}{|S|} \sum_{j=1}^{N} p_j \log_2(p_j)
\]
Recap: Ensemble Combination

- **Ensemble combination**
 - Tree leaves \((l, \eta)\) store posterior probabilities of the target classes.
 \[
 p_{l, \eta}(C|x)
 \]
 - Combine the output of several trees by averaging their posteriors (Bayesian model combination)
 \[
 p(C|x) = \frac{1}{L} \sum_{l=1}^{L} p_{l, \eta}(C|x)
 \]

B. Leibe
Recap: Random Forests (Breiman 2001)

- General ensemble method
 - Idea: Create ensemble of many (50 - 1,000) trees.

- Empirically very good results
 - Often as good as SVMs (and sometimes better)!
 - Often as good as Boosting (and sometimes better)!

- Injecting randomness
 - Bootstrap sampling process
 - On average only 63% of training examples used for building the tree
 - Remaining 37% out-of-bag samples used for validation.
 - Random attribute selection
 - Randomly choose subset of K attributes to select from at each node.
 - Faster training procedure.

- Simple majority vote for tree combination
Recap: A Graphical Interpretation

Different trees induce different partitions on the data.

By combining them, we obtain a finer subdivision of the feature space...
Recap: A Graphical Interpretation

Different trees induce different partitions on the data.

By combining them, we obtain a finer subdivision of the feature space...

...which at the same time also better reflects the uncertainty due to the bootstrapped sampling.
Recap: Extremely Randomized Decision Trees

- Random queries at each node...
 - Tree gradually develops from a classifier to a flexible container structure.
 - Node queries define (randomly selected) structure.
 - Each leaf node stores posterior probabilities

- Learning
 - Patches are “dropped down” the trees.
 - Only pairwise pixel comparisons at each node.
 - Directly update posterior distributions at leaves
 ⇒ Very fast procedure, only few pixel-wise comparisons.
 ⇒ No need to store the original patches!
Recap: Ferns

- Ferns
 - Ferns are semi-naïve Bayes classifiers.
 - They assume independence between sets of features (between the ferns)...
 - ...and enumerate all possible outcomes inside each set.

- Interpretation
 - Combine the tests \(f_l, \ldots, f_{l+S} \) into a binary number.
 - Update the “fern leaf” corresponding to that number.

```
   0 0 1
f_0
f_1
f_2
```

Update leaf \(100_2 = 4 \)

B. Leibe
Recap: Ferns (Semi-Naïve Bayes Classifiers)

- Ferns
 - A fern F is defined as a set of S binary features $\{f_l, \ldots, f_{l+S}\}$.
 - M: number of ferns, $N_f = S \cdot M$.
 - This represents a compromise:
 \[
 p(f_1, \ldots, f_{N_f} | C_k) \approx \prod_{j=1}^{M} p(F_j | C_k)
 \]
 \[
 = p(f_1, \ldots, f_S | C_k) \cdot p(f_{S+1}, \ldots, f_{2S} | C_k) \cdot \ldots
 \]
 Full joint inside fern \hspace{1cm} Naïve Bayes between ferns

\Rightarrow Model with $M \cdot 2^S$ parameters (“Semi-Naïve”).
\Rightarrow Flexible solution that allows complexity/performance tuning.
Course Outline

- Fundamentals
 - Bayes Decision Theory
 - Probability Density Estimation

- Discriminative Approaches
 - Linear Discriminant Functions
 - Statistical Learning Theory & SVMs
 - Boosting, Decision Trees, Random Forests
 - Model Selection

- Generative Models
 - Bayesian Networks
 - Markov Random Fields

- Regression Problems
 - Gaussian Processes
Recap: Model Selection

- We’ve now seen even more different classifiers...
 - k-NN
 - Bayes classifiers
 - Fisher’s Linear Discriminant
 - SVMs
 - AdaBoost
 - Decision Trees
 - Randomized Trees & Ferns

- So... which one of them is best?

B. Leibe
Recap: Which Classifier Is Best?

- Can we say something about classification performance in general?
 - Can we give performance guarantees for certain classifiers?
 - Yes, to some degree. But the bounds are often too loose.
 - Can we find a classifier or learning algorithm that is consistently better than all others?
 - No. There is no free lunch.
 - Can we at least find a set of features that is consistently better than all others?
 - No. There is no “best” set of features.
 - How can we then empirically choose between different classification models?
 - Model selection problem
Recap: Bayes Error Rate

- Bayes error rate
 - Irreducible error rate under optimal classification based on the test data’s ground truth labels.
 - Upper bound on achievable classifier accuracy.
 - We know that the error of the 1-NN classifier is at most twice the Bayes error.
 - However, this doesn’t say how well other classifiers would perform on the same data...
 - In practice, the Bayes error rate is mainly of theoretical interest...

Image source: Duda & Hart, 2001
Recap: Statistical Learning Theory

- **Structural Risk Minimization**
 - Aims to quantify the structural risk of the employed classifier through the VC confidence.
 - Approximation formula
 \[R(\alpha) \leq R_{\text{emp}}(\alpha) + \epsilon(N, p^*, h) \]

- We know that the SVM tries to minimize the structural risk of the classifier by maximizing the margin.
- But the guaranteed risk (bound on generalization error) of the above formula is still in most cases too loose...
Recap: No Free Lunch Theorem - Results

• Theorem
 - For any two learning algorithms $p_1(h|D)$ and $p_2(h|D)$, the following statements are true independent of the sampling distribution $p(x)$ and the number of training points n:

1. Uniformly averaged over all target functions F,
 \[E_1(E|F, n) - E_2(E|F, n) = 0 \]

“No matter how clever we are at choosing a “good” learning algorithm, if all target functions are equally likely, it will not outperform random guessing.”
Recap: No Free Lunch Theorem - Results

• Theorem

 ➢ For any two learning algorithms $p_1(h|D)$ and $p_2(h|D)$, the following statements are true independent of the sampling distribution $p(x)$ and the number of training points n:

 1. Uniformly averaged over all target functions F,
 \[\mathcal{E}_1(E|F, n) - \mathcal{E}_2(E|F, n) = 0 \]

 2. For any fixed training set D, uniformly averaged over F,
 \[\mathcal{E}_1(E|F, D) - \mathcal{E}_2(E|F, D) = 0 \]

“*This even holds if we know the training set D.*”
Recap: No Free Lunch Theorem - Results

• Theorem

- For any two learning algorithms \(p_1(h|D) \) and \(p_2(h|D) \), the following statements are true independent of the sampling distribution \(p(x) \) and the number of training points \(n \):

3. Uniformly averaged over all priors \(p(F) \),
 \[E_1(E|n) - E_2(E|n) = 0 \]

4. For any fixed training set \(D \), uniformly averaged over \(p(F) \),
 \[E_1(E|D) - E_2(E|D) = 0 \]

“The same is true for non-uniform target function distributions (again even if we know the training set \(D \)).”
Recap: No Free Lunch Theorem - Implications

Possible learning systems

Impossible learning systems

Problem space (not feature space)

Image source: Duda & Hart, 2001
Recap: Ugly Duckling Theorem

• Theorem
 - Given that we use a finite set of predicates that enables us to distinguish any two patterns under consideration, the number of predicates shared by any two such patterns is constant and independent of the choice of those patterns.

 ⇒ If pattern similarity is based on the total number of predicates shared by two patterns, then any two patterns are “equally similar”.
 - This also holds for continuous feature spaces.

“There is no problem independent or privileged or “best” set of features or feature attributes.”
Recap: Ugly Duckling Theorem - Implications

• There is no problem independent best set of features.
 ➢ Even the notion of similarity between patterns is fundamentally based on assumptions about the problem domain.
 ➢ Those assumptions may or may not be correct.
Recap: Occam’s Razor

- Philosophical principle
 "In science, all other things being equal, simple theories are preferable to complex ones"
 William of Occam (1285-1347)

 - Best scientific theory is the smallest one that explains all the facts.

- Interpretation
 - Most learning models ("theories") make errors.
 - Those errors are like exceptions to the theory.
 - Information embedded in exceptions must be included as part of the theory when simplicity is judged.
Recap: Minimum Description Length Principle

- **MDL Principle**

 "The best theory for a body of data is one that minimizes the size of the theory plus the amount of information necessary to specify exceptions."

 \[\Rightarrow \text{Recommends choosing the } h \text{ that minimizes } L(h) + L(D|h). \]

- **Connection to Maximum-Likelihood estimation**

 - Aim of ML is to maximize \(p(h|D) \).

 - Bayes rule: \[p(h|D) = \frac{p(h)p(D|h)}{p(D)} \]

 - The optimal hypothesis is thus
 \[h^* = \arg\min_h \left[-\log_2 p(h) - \log_2 p(D|h) \right] \]

 - This connection gives some credence to MDL principle.
Recap: Applying MDL to Clustering

• Recall: Difficulty in k-means and EM clustering
 - How to select the number of clusters k?
 - Cannot compare LMS error \Rightarrow approaches zero for $k \to N$.

• Idea
 - Search for the clustering that minimizes the description length.
 - Need to define
 - $p(\mathcal{D}|h)$: likelihood of the data points under the cluster model.
 - $p(h)$: model prior \Rightarrow Choose here the cost for specifying the model:

$$
\log p(\mathcal{D}|h) = \sum_{n=1}^{N} \log \left(\sum_{k=1}^{K} \pi_k \mathcal{N}(x_n | \mu_k, \Sigma_k) \right)
$$

$$
\log p(h) = \sum_{k=1}^{K} [\log \pi_k + \log \mu_k + \log \Sigma_k]
$$
Recap: Other Model Selection Criteria...

- **Akaike Information Criterion (AIC)**
 - Choose the model which maximizes
 \[
 \log p(D|h_{ML}) - M
 \]
 where
 - \(p(D|h_{ML})\) is the best-fit log-likelihood and
 - \(M\) is the number of adjustable parameters in the model.

- **Bayes Information Criterion (BIC)**
 - Choose the model which maximizes
 \[
 \log p(D|h) \simeq \log p(D|h_{MAP}) - \frac{1}{2} M \log N
 \]
 where
 - \(p(D|h_{MAP})\) is the best maximum-a-posteriori model.
 - \(N\) is the number of data points.

\(\Rightarrow\) BIC penalizes complex models more heavily than AIC.

B. Leibe
Course Outline

• Fundamentals
 ➢ Bayes Decision Theory
 ➢ Probability Density Estimation

• Discriminative Approaches
 ➢ Lin. Discriminants, SVMs, Boosting

• Graphical Models
 ➢ Bayesian Networks
 ➢ Markov Random Fields
 ➢ Exact Inference
 ➢ Approximate Inference

• Regression Problems
 ➢ Gaussian Processes
Recap: Graphical Models

- Two basic kinds of graphical models
 - Directed graphical models or Bayesian Networks
 - Undirected graphical models or Markov Random Fields

- Key components
 - Nodes
 - Random variables
 - Edges
 - Directed or undirected
 - The value of a random variable may be known or unknown.
Recap: Directed Graphical Models

- Chains of nodes:

\[
p(a) \quad p(b|a) \quad p(c|b)
\]

- Knowledge about a is expressed by the prior probability:

\[p(a)\]

- Dependencies are expressed through conditional probabilities:

\[p(b|a), \ p(c|b)\]

- Joint distribution of all three variables:

\[
p(a, b, c) = p(c|a, b)p(a, b) = p(c|b)p(b|a)p(a)
\]
Recap: Directed Graphical Models

- Convergent connections:

 - Here the value of c depends on both variables a and b.
 - This is modeled with the conditional probability:
 \[p(c|a, b) \]
 - Therefore, the joint probability of all three variables is given as:
 \[p(a, b, c) = p(c|a, b)p(a, b) = p(c|a, b)p(a)p(b) \]

Slide credit: Bernt Schiele, Stefan Roth
Recap: Factorization of the Joint Probability

- Computing the joint probability

\[p(x_1, \ldots, x_7) = p(x_1)p(x_2)p(x_3)p(x_4|x_1, x_2, x_3) \]
\[\quad \times p(x_5|x_1, x_3)p(x_6|x_4)p(x_7|x_4, x_5) \]

General factorization

\[p(x) = \prod_{k=1}^{K} p(x_k|pa_k) \]

We can directly read off the factorization of the joint from the network structure!
Recap: Factorized Representation

- Reduction of complexity
 - Joint probability of n binary variables requires us to represent values by brute force
 $$O(2^n) \text{ terms}$$
 - The factorized form obtained from the graphical model only requires
 $$O(n \cdot 2^k) \text{ terms}$$
 - k: maximum number of parents of a node.

⇒ *It’s the edges that are missing in the graph that are important! They encode the simplifying assumptions we make.*
Recap: Conditional Independence

- **Definition:**
 \[X \perp Y | V \iff p(X | Y, V) = p(X | V) \]

- **Also:**
 \[X \perp Y | V \iff p(X, Y | V) = p(X | V) p(Y | V) \]

- **Special case: Marginal Independence**
 \[X \perp Y \iff X \perp Y | \emptyset \iff p(X, Y) = p(X) p(Y) \]

- Often, we are interested in conditional independence between sets of variables:
 \[\mathcal{X} \perp \mathcal{Y} | \mathcal{V} \iff \{ X \perp Y | V, \forall X \in \mathcal{X} \text{ and } \forall Y \in \mathcal{Y} \} \]
Recap: Conditional Independence

- Three cases
 - **Divergent** ("Tail-to-Tail")
 - Conditional independence when \(c \) is observed.
 - **Chain** ("Head-to-Tail")
 - Conditional independence when \(c \) is observed.
 - **Convergent** ("Head-to-Head")
 - Conditional independence when neither \(c \), nor any of its descendants are observed.
Recap: D-Separation

• Definition
 - Let A, B, and C be non-intersecting subsets of nodes in a directed graph.
 - A path from A to B is blocked if it contains a node such that either
 - The arrows on the path meet either head-to-tail or tail-to-tail at the node, and the node is in the set C, or
 - The arrows meet head-to-head at the node, and neither the node, nor any of its descendants, are in the set C.
 - If all paths from A to B are blocked, A is said to be d-separated from B by C.

• If A is d-separated from B by C, the joint distribution over all variables in the graph satisfies $A \perp B \mid C$.
 - Read: “A is conditionally independent of B given C.”

See Exercise 4.3
Recap: “Bayes Ball” Algorithm

- Graph algorithm to compute d-separation
 - **Goal**: Get a ball from X to Y without being blocked by \mathcal{V}.
 - Depending on its direction and the previous node, the ball can
 - Pass through (from parent to all children, from child to all parents)
 - Bounce back (from any parent/child to all parents/children)
 - Be blocked

- Game rules
 - An **unobserved** node ($W \notin \mathcal{V}$) passes through balls from parents, but also bounces back balls from children.
 - An **observed** node ($W \in \mathcal{V}$) bounces back balls from parents, but blocks balls from children.
Recap: The Markov Blanket

- **Markov blanket of a node** x_i
 - Minimal set of nodes that isolates x_i from the rest of the graph.
 - This comprises the set of
 - Parents,
 - Children, and
 - Co-parents of x_i.

This is what we have to watch out for!

B. Leibe

Image source: C. Bishop, 2006
Course Outline

- **Fundamentals**
 - Bayes Decision Theory
 - Probability Density Estimation

- **Discriminative Approaches**
 - Lin. Discriminants, SVMs, Boosting

- **Graphical Models**
 - Bayesian Networks
 - Markov Random Fields
 - Exact Inference
 - Approximate Inference

- **Regression Problems**
 - Gaussian Processes

B. Leibe
Recap: Undirected Graphical Models

- Undirected graphical models ("Markov Random Fields")
 - Given by undirected graph

- Conditional independence for undirected graphs
 - If every path from any node in set A to set B passes through at least one node in set C, then $A \perp B|C$.
 - Simple Markov blanket:
Recap: Factorization in MRFs

- **Joint distribution**
 - Written as product of potential functions over maximal cliques in the graph:
 \[
 p(x) = \frac{1}{Z} \prod_C \psi_C(x_C)
 \]
 - The normalization constant Z is called the partition function.
 \[
 Z = \sum_x \prod_C \psi_C(x_C)
 \]

- **Remarks**
 - BNs are automatically normalized. But for MRFs, we have to explicitly perform the normalization.
 - Presence of normalization constant is major limitation!
 - Evaluation of Z involves summing over $O(K^M)$ terms for M nodes!
Factorization in MRFs

- Role of the potential functions
 - General interpretation
 - No restriction to potential functions that have a specific probabilistic interpretation as marginals or conditional distributions.
 - Convenient to express them as exponential functions ("Boltzmann distribution")
 \[\psi_C(x_C) = \exp\{-E(x_C)\} \]
 - with an energy function \(E \).
 - Why is this convenient?
 - Joint distribution is the product of potentials \(\Rightarrow \) sum of energies.
 - We can take the log and simply work with the sums...
Recap: Converting Directed to Undirected Graphs

- Problematic case: multiple parents

\[p(x) = p(x_1)p(x_2)p(x_3)p(x_4|x_1, x_2, x_3) \]

Need a clique of \(x_1, ..., x_4 \) to represent this factor!

- Need to introduce additional links ("marry the parents").
 \[\Rightarrow \text{This process is called moralization. It results in the moral graph.} \]
Recap: Conversion Algorithm

- General procedure to convert directed \rightarrow undirected
 1. Add undirected links to marry the parents of each node.
 2. Drop the arrows on the original links \Rightarrow moral graph.
 3. Find maximal cliques for each node and initialize all clique potentials to 1.
 4. Take each conditional distribution factor of the original directed graph and multiply it into one clique potential.

- Restriction
 - Conditional independence properties are often lost!
 - Moralization results in additional connections and larger cliques.

Recap: Computing Marginals

• How do we apply graphical models?
 ➢ Given some observed variables, we want to compute distributions of the unobserved variables.
 ➢ In particular, we want to compute marginal distributions, for example $p(x_4)$.

• How can we compute marginals?
 ➢ Classical technique: sum-product algorithm by Judea Pearl.
 ➢ In the context of (loopy) undirected models, this is also called (loopy) belief propagation [Weiss, 1997].
 ➢ Basic idea: message-passing.
Recap: Message Passing on a Chain

- **Idea**
 - Pass messages from the two ends towards the query node x_n.

- **Define the messages recursively:**

 $\mu_\alpha(x_n) = \sum_{x_{n-1}} \psi_{n-1,n}(x_{n-1}, x_n) \mu_\alpha(x_{n-1})$

 $\mu_\beta(x_n) = \sum_{x_{n+1}} \psi_{n,n+1}(x_n, x_{n+1}) \mu_\beta(x_{n+1})$

- **Compute the normalization constant Z at any node x_m.**

 $Z = \sum_{x_m} \mu_\alpha(x_m) \mu_\beta(x_m)$
Recap: Message Passing on Trees

- **General procedure** for all tree graphs.
 - Root the tree at the variable that we want to compute the marginal of.
 - Start computing messages at the leaves.
 - Compute the messages for all nodes for which all incoming messages have already been computed.
 - Repeat until we reach the root.

- If we want to compute the marginals for all possible nodes (roots), we can reuse some of the messages.
 - Computational expense linear in the number of nodes.

- We already motivated message passing for inference.
 - How can we formalize this into a general algorithm?
Course Outline

• Fundamentals
 - Bayes Decision Theory
 - Probability Density Estimation

• Discriminative Approaches
 - Lin. Discriminants, SVMs, Boosting

• Graphical Models
 - Bayesian Networks
 - Markov Random Fields
 - Exact Inference
 - Approximate Inference

• Regression Problems
 - Gaussian Processes
Recap: Factor Graphs

- Joint probability
 - Can be expressed as **product of factors**:
 \[p(x) = \frac{1}{Z} \prod_{s} f_s(x_s) \]
 - Factor graphs make this explicit through separate factor nodes.

- Converting a directed polytree
 - Conversion to undirected tree creates loops due to moralization!
 - Conversion to a factor graph again results in a tree!

Image source: C. Bishop, 2006
Recap: Sum-Product Algorithm

- Objectives
 - Efficient, exact inference algorithm for finding marginals.

- Procedure:
 - Pick an arbitrary node as root.
 - Compute and propagate messages from the leaf nodes to the root, storing received messages at every node.
 - Compute and propagate messages from the root to the leaf nodes, storing received messages at every node.
 - Compute the product of received messages at each node for which the marginal is required, and normalize if necessary.

\[
p(x) \propto \prod_{s \in \text{ne}(x)} \mu_{f_s \rightarrow x}(x)
\]

- Computational effort
 - Total number of messages = 2 \cdot \text{number of graph edges}.
Recap: Sum-Product Algorithm

• Two kinds of messages
 - Message from factor node to variable nodes:
 - **Sum** of factor contributions
 \[\mu_{f_s \rightarrow x}(x) \equiv \sum_{X_s} F_s(x, X_s) = \sum_{X_s} f_s(x_s) \prod_{m \in \text{ne}(f_s) \setminus x} \mu_{x_m \rightarrow f_s}(x_m) \]
 - Message from variable node to factor node:
 - **Product** of incoming messages
 \[\mu_{x_m \rightarrow f_s}(x_m) \equiv \prod_{l \in \text{ne}(x_m) \setminus f_s} \mu_{f_l \rightarrow x_m}(x_m) \]
 ⇒ Simple propagation scheme.

see Exercise 4.6
Recap: Sum-Product from Leaves to Root

\[\mu_{f \rightarrow x}(x) \equiv \sum_{X_s} f_s(x_s) \prod_{m \in \text{ne}(f_s) \setminus x} \mu_{x_m \rightarrow f_s}(x_m) \]

\[\mu_{x_m \rightarrow f_s}(x_m) \equiv \prod_{l \in \text{ne}(x_m) \setminus f_s} \mu_{f_l \rightarrow x_m}(x_m) \]

\[\mu_x \rightarrow f(x) = 1 \quad \mu_{f \rightarrow x}(x) = f(x) \]

Message definitions:

Image source: C. Bishop, 2006
Recap: Sum-Product from Root to Leaves

Message definitions:

\[\mu_{f_s \rightarrow x}(x) \equiv \sum_{x_s} f_s(x_s) \prod_{m \in \text{ne}(f_s) \setminus x} \mu_{x_m \rightarrow f_s}(x_m) \]

\[\mu_{x_m \rightarrow f_s}(x_m) \equiv \prod_{l \in \text{ne}(x_m) \setminus f_s} \mu_{f_l \rightarrow x_m}(x_m) \]

\[\mu_{x \rightarrow f}(x) = 1 \]

\[\mu_{f \rightarrow x}(x) = f(x) \]
Recap: Max-Sum Algorithm

- **Objective:** an efficient algorithm for finding
 - Value \(x^{\text{max}} \) that maximises \(p(x) \);
 - Value of \(p(x^{\text{max}}) \).
 \(\Rightarrow \) Application of dynamic programming in graphical models.

- **Key ideas**
 - We are interested in the maximum value of the joint distribution
 \[
 p(x^{\text{max}}) = \max_x p(x)
 \]
 \(\Rightarrow \) Maximize the product \(p(x) \).
 - For numerical reasons, use the logarithm.
 \[
 \ln \left(\max_x p(x) \right) = \max_x \ln p(x).
 \]
 \(\Rightarrow \) Maximize the sum (of log-probabilities).
Recap: Max-Sum Algorithm

- Initialization (leaf nodes)
 \[\mu_{x \rightarrow f}(x) = 0 \quad \mu_{f \rightarrow x}(x) = \ln f(x) \]

- Recursion

 Messages
 \[\mu_{f \rightarrow x}(x) = \max_{x_1, \ldots, x_M} \left[\ln f(x, x_1, \ldots, x_M) + \sum_{m \in \text{ne}(f) \setminus x} \mu_{x_m \rightarrow f}(x_m) \right] \]
 \[\mu_{x \rightarrow f}(x) = \sum_{l \in \text{ne}(x) \setminus f} \mu_{f_l \rightarrow x}(x) \]

 For each node, keep a record of which values of the variables gave rise to the maximum state:
 \[\phi(x) = \arg \max_{x_1, \ldots, x_M} \left[\ln f(x, x_1, \ldots, x_M) + \sum_{m \in \text{ne}(f) \setminus x} \mu_{x_m \rightarrow f}(x_m) \right] \]
Recap: Max-Sum Algorithm

- Termination (root node)
 - Score of maximal configuration
 \[
 p_{\text{max}} = \max_x \left(\sum_{s \in \text{ne}(x)} \mu_{f_s \rightarrow x}(x) \right)
 \]
 - Value of root node variable giving rise to that maximum
 \[
 x_{\text{max}} = \arg \max_x \left(\sum_{s \in \text{ne}(x)} \mu_{f_s \rightarrow x}(x) \right)
 \]
 - Back-track to get the remaining variable values
 \[
 x_{n-1}^{\text{max}} = \phi(x_n^{\text{max}})
 \]
Recap: Junction Tree Algorithm

- **Motivation**
 - **Exact** inference on general graphs.
 - Works by turning the initial graph into a *junction tree* and then running a sum-product-like algorithm.
 - **Intractable** on graphs with large cliques.

- **Main steps**
 1. If starting from directed graph, first convert it to an undirected graph by *moralization*.
 2. Introduce additional links by *triangulation* in order to reduce the size of cycles.
 3. Find cliques of the moralized, triangulated graph.
 4. Construct a new graph from the *maximal cliques*.
 5. Remove minimal links to *break cycles* and get a *junction tree*.

⇒ Apply regular *message passing* to perform inference.
Recap: Junction Tree Example

- Without triangulation step
 - The final graph will contain cycles that we cannot break without losing the running intersection property!
Recap: Junction Tree Example

- When applying the triangulation
 - Only small cycles remain that are easy to break.
 - Running intersection property is maintained.

B. Leibe

Image source: J. Pearl, 1988
Course Outline

- **Fundamentals**
 - Bayes Decision Theory
 - Probability Density Estimation

- **Discriminative Approaches**
 - Lin. Discriminants, SVMs, Boosting

- **Graphical Models**
 - Bayesian Networks & Applications
 - Markov Random Fields & Applications
 - Exact Inference
 - Approximate Inference

- **Regression Problems**
 - Gaussian Processes

B. Leibe
Recap: MRF Structure for Images

• Basic structure

![MRF Structure Diagram]

Noisy observations

“True” image content

• Two components
 - Observation model
 - How likely is it that node x_i has label L_i given observation y_i?
 - This relationship is usually learned from training data.
 - Neighborhood relations
 - Simplest case: 4-neighborhood
 - Serve as smoothing terms.
 - Discourage neighboring pixels to have different labels.
 - This can either be learned or be set to fixed “penalties”.

B. Leibe
Recap: How to Set the Potentials?

- **Unary potentials**
 - E.g. color model, modeled with a Mixture of Gaussians
 \[
 \phi(x_i, y_i; \theta) = \log \sum_k \theta_k(x_i, k)p(k|x_i)\mathcal{N}(y_i; \bar{y}_k, \Sigma_k)
 \]

⇒ Learn color distributions for each label
Recap: How to Set the Potentials?

- **Pairwise potentials**
 - **Potts Model**
 \[\psi(x_i, x_j; \theta_\psi) = \theta_\psi \delta(x_i \neq x_j) \]
 - Simplest discontinuity preserving model.
 - Discontinuities between any pair of labels are penalized equally.
 - Useful when labels are unordered or number of labels is small.

- **Extension: “contrast sensitive Potts model”**
 \[\psi(x_i, x_j, g_{ij}(y); \theta_\psi) = \theta_\psi g_{ij}(y) \delta(x_i \neq x_j) \]
 where
 \[g_{ij}(y) = e^{-\beta \| y_i - y_j \|^2} \]
 \[\beta = 2 / \text{avg} \left(\| y_i - y_j \|^2 \right) \]
 - Discourages label changes except in places where there is also a large change in the observations.
Recap: Graph Cuts for Binary Problems

"expected" intensities of object and background I^s and I^t
can be re-estimated

$$D_p(s) \propto \exp\left(-||I_p - I^s||^2 / 2\sigma^2\right)$$
$$D_p(t) \propto \exp\left(-||I_p - I^t||^2 / 2\sigma^2\right)$$

EM-style optimization

Slide credit: Yuri Boykov

[Boykov & Jolly, ICCV’01]
Recap: s-t-Mincut Equivalent to Maxflow

Augmenting Path Based Algorithms

1. Find path from source to sink with positive capacity
2. Push maximum possible flow through this path
3. Repeat until no path can be found

Algorithms assume non-negative capacity
Recap: When Can s-t Graph Cuts Be Applied?

- s-t graph cuts can only globally minimize binary energies that are submodular. [Boros & Hummer, 2002, Kolmogorov & Zabih, 2004]

\[E(L) = \sum_{p} E_p(L_p) + \sum_{pq \in N} E(L_p, L_q) \]

- Regional term
 - \(E_p(L_p) \)
 - t-links
- Boundary term
 - \(E(L_p, L_q) \)
 - n-links

- \(L_p \in \{s, t\} \)

\[E(L) \text{ can be minimized by s-t graph cuts} \iff E(s,s) + E(t,t) \leq E(s,t) + E(t,s) \]

- Submodularity is the discrete equivalent to convexity.
 - Implies that every local energy minimum is a global minimum.
 - Solution will be globally optimal.
Recap: α-Expansion Move

- Basic idea:
 - Break multi-way cut computation into a sequence of binary s-t cuts.
 - No longer globally optimal result, but guaranteed approximation quality and typically converges in few iterations.

Slide credit: Yuri Boykov
Recap: Simple Binary Image Denoising Model

- **MRF Structure**

 ![MRF Diagram](image-url)

 Observation process

 - **“True” image content**
 - **Noisy observations**

 “Smoothness constraints”

 - Example: simple energy function ("Potts model")

 \[
 E(x, y) = h \sum_i x_i + \beta \sum_{i,j} \delta(x_i \neq x_j) + \eta \sum_i \delta(x_i \neq y_i)
 \]

 - **Prior**
 - **Smoothness**
 - **Observation**

 - Smoothness term: fixed penalty \(\beta\) if neighboring labels disagree.
 - Observation term: fixed penalty \(\eta\) if label and observation disagree.

B. Leibe

Image source: C. Bishop, 2006
Recap: Converting an MRF into an s-t Graph

• Conversion:

\[
L_i = \begin{cases}
1 & \text{Source} \\
0 & \text{Sink}
\end{cases}
\]

\[
h + \eta(1 - y_i)
\]

\[
\eta y_i
\]

• Energy:

\[
E(x, y) = h \sum_i x_i + \beta \sum_{\{i,j\}} \delta(x_i \neq x_j) + \eta \sum_i \delta(x_i \neq y_i)
\]

- Unary potentials are straightforward to set.
 - Just insert \(x_i = 1\) and \(x_i = 0\) into the unary terms above…
Recap: Converting an MRF into an s-t Graph

• Conversion:

$$L_i = 1$$

$$h + \eta(1 - y_i)$$

• Energy:

$$E(x, y) = h \sum_i x_i + \beta \sum_{\{i,j\}} \delta(x_i \neq x_j) - \eta \sum_i x_i y_i$$

- **Unary potentials** are straightforward to set.
- **Pairwise potentials** are more tricky, since we don’t know x_i!
 - Trick: the pairwise energy only has an influence if $x_i \neq x_j$.
 - (Only!) in this case, the cut will go through the edge $\{x_i, x_j\}$.

B. Leibe
Course Outline

• Fundamentals
 ➢ Bayes Decision Theory
 ➢ Probability Density Estimation

• Discriminative Approaches
 ➢ Lin. Discriminants, SVMs, Boosting

• Graphical Models
 ➢ Bayesian Networks & Applications
 ➢ Markov Random Fields & Applications
 ➢ Exact Inference
 ➢ Approximate Inference

• Regression Problems
 ➢ Gaussian Processes
Recap: Parameter Learning in BNs

- We need to specify two things:
 - **Structure** of Bayesian network (graph topology)
 - Parameters of each **conditional probability table** (CPT)

- It is possible to learn both from training data.
 - But learning structure is much harder than learning parameters.
 - Also, learning when some nodes are hidden is much harder than when everything is observable.

- Four cases:

<table>
<thead>
<tr>
<th>Structure</th>
<th>Observability</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Known</td>
<td>Full</td>
<td>Maximum Likelihood Estimation</td>
</tr>
<tr>
<td>Known</td>
<td>Partial</td>
<td>EM (or gradient ascent)</td>
</tr>
<tr>
<td>Unknown</td>
<td>Full</td>
<td>Search through model space</td>
</tr>
<tr>
<td>Unknown</td>
<td>Partial</td>
<td>EM + search through model space</td>
</tr>
</tbody>
</table>
Recap: Learning with Known Structure

ML-Learning with complete data (no hidden variables)
- Log-likelihood decomposes into sum of functions of θ_i.
- Each θ_i can be optimized separately.
- ML-solution: simply calculate frequencies.

ML-Learning with incomplete data (hidden variables)
- Iterative EM algorithm.
- E-step: compute expected counts given previous settings $\theta^{(t)}$ of parameters $E[n_{i,j,k} \mid D, \theta^{(t)}]$.
- M-step: re-estimate parameters θ using the expected counts.

$$
\theta_{i,j,k}^{(t+1)} \leftarrow \frac{E[n_{i,j,k} \mid D, \theta^{(t)}]}{\sum_{k'} E[n_{i,j,k'} \mid D, \theta^{(t)}]}
$$

Slide credit: Bernt Schiele
Recap: Unknown Structure

- Goal
 - Learn a directed acyclic graph (DAG) that best explains the data.

- Constraints-based learning
 - Use statistical tests of marginal and conditional independence.
 - Find the set of DAGs whose d-separation relations match the results of conditional independence tests.

- Score-based learning
 - Use a global score such as BIC (Bayes Information Criterion).
 - Find a structure that maximizes this score.
Course Outline

• Fundamentals
 - Bayes Decision Theory
 - Probability Density Estimation

• Discriminative Approaches
 - Lin. Discriminants, SVMs, Boosting

• Graphical Models
 - Bayesian Networks & Applications
 - Markov Random Fields & Applications
 - Exact Inference
 - Approximate Inference

• Regression Problems
 - Gaussian Processes
Recap: Sampling Idea

- **Objective:**
 - Evaluate expectation of a function $f(z)$ w.r.t. a probability distribution $p(z)$.

 $$
 \mathbb{E}[f] = \int f(z)p(z) \, dz
 $$

- **Sampling idea**
 - Draw L independent samples $z^{(l)}$ with $l = 1, \ldots, L$ from $p(z)$.
 - This allows the expectation to be approximated by a finite sum
 $$
 \hat{f} = \frac{1}{L} \sum_{l=1}^{L} f(z^{(l)})
 $$
 - As long as the samples $z^{(l)}$ are drawn independently from $p(z)$, then
 $$
 \mathbb{E}[\hat{f}] = \mathbb{E}[f]
 $$

 \Rightarrow **Unbiased estimate, independent** of the dimension of z!

Slide adapted from Bernt Schiele

Image source: C.M. Bishop, 2006
Recap: Sampling from a pdf

- In general, assume we are given the pdf \(p(x) \) and the corresponding cumulative distribution:

\[
F(x) = \int_{-\infty}^{x} p(z) dz
\]

- To draw samples from this pdf, we can invert the cumulative distribution function:

\[
U \sim Uniform(0, 1) \Rightarrow F^{-1}(U) \sim p(x)
\]
Recap: Rejection Sampling

- **Assumptions**
 - Sampling directly from $p(z)$ is difficult.
 - But we can easily evaluate $p(z)$ (up to some norm. factor Z_p):
 $$ p(z) = \frac{1}{Z_p} \tilde{p}(z) $$

- **Idea**
 - We need some simpler distribution $q(z)$ (called proposal distribution) from which we can draw samples.
 - Choose a constant k such that: $\forall z : kq(z) \geq \tilde{p}(z)$

- **Sampling procedure**
 - Generate a number z_0 from $q(z)$.
 - Generate a number u_0 from the uniform distribution over $[0, kq(z_0)]$.
 - If $u_0 > \tilde{p}(z_0)$ reject sample, otherwise accept.
Recap: Importance Sampling

- **Approach**
 - Approximate expectations directly (but does **not** enable to draw samples from $p(z)$ directly).
 - Goal:
 \[\mathbb{E}[f] = \int f(z)p(z)dz \]

- **Idea**
 - Use a proposal distribution $q(z)$ from which it is easy to sample.
 - Express expectations in the form of a finite sum over samples \(\{z^{(l)}\} \) drawn from $q(z)$.
 \[\mathbb{E}[f] = \int f(z)p(z)dz = \int f(z)\frac{p(z)}{q(z)}q(z)dz \]
 \[\approx \frac{1}{L} \sum_{l=1}^{L} \frac{p(z^{(l)})}{q(z^{(l)})} f(z^{(l)}) \]

Importance weights

Image source: C.M. Bishop, 2006
Recap: MCMC - Markov Chain Monte Carlo

• Overview
 - Allows to sample from a large class of distributions.
 - Scales well with the dimensionality of the sample space.

• Idea
 - We maintain a record of the current state \(z^{(\tau)} \)
 - The proposal distribution depends on the current state: \(q(z | z^{(\tau)}) \)
 - The sequence of samples forms a Markov chain \(z^{(1)}, z^{(2)}, \ldots \)

• Approach
 - At each time step, we generate a candidate sample from the proposal distribution and accept the sample according to a criterion.
 - Different variants of MCMC for different criteria.
Recap: MCMC - Metropolis Algorithm

• Metropolis algorithm
 - Proposal distribution is symmetric: \(q(z_A|z_B) = q(z_B|z_A) \)
 - The new candidate sample \(z^* \) is accepted with probability
 \[
 A(z^*, z^{(\tau)}) = \min \left(1, \frac{\hat{p}(z^*)}{\tilde{p}(z^{(\tau)})} \right)
 \]
 \(\Rightarrow \) New candidate samples always accepted if \(\tilde{p}(z^*) \geq \tilde{p}(z^{(\tau)}) \).
 - The algorithm sometimes accepts a state with lower probability.

• Metropolis-Hastings Algorithm
 - Generalization: Proposal distribution not necessarily symmetric.
 - The new candidate sample \(z^* \) is accepted with probability
 \[
 A(z^*, z^{(\tau)}) = \min \left(1, \frac{\tilde{p}(z^*)q_k(z^{(\tau)}|z^*)}{\hat{p}(z^{(\tau)})q_k(z^*|z^{(\tau)})} \right)
 \]
 - where \(k \) labels the members of the set of considered transitions.

See Exercise 6.4
Recap: Gibbs Sampling

• Approach
 - MCMC-algorithm that is simple and widely applicable.
 - May be seen as a special case of Metropolis-Hastings.

• Idea
 - Sample variable-wise: replace \(z_i \) by a value drawn from the distribution \(p(z_i | z_{\setminus i}) \).
 - This means we update one coordinate at a time.
 - Repeat procedure either by cycling through all variables or by choosing the next variable.

• Properties
 - The algorithm always accepts!
 - Completely parameter free.
 - Can also be applied to subsets of variables.
Course Outline

• Fundamentals
 - Bayes Decision Theory
 - Probability Density Estimation

• Discriminative Approaches
 - Lin. Discriminants, SVMs, Boosting

• Graphical Models
 - Bayesian Networks & Applications
 - Markov Random Fields & Applications
 - Exact Inference
 - Approximate Inference

• Regression Problems
 - Gaussian Processes
Recap: Least-Squares Regression

- We have given
 - Training data points: \(X = \{x_1 \in \mathbb{R}^d, \ldots, x_n\} \)
 - Associated function values: \(Y = \{y_1 \in \mathbb{R}, \ldots, y_n\} \)

- Start with linear regressor:
 - Try to enforce \(x_i^T w + w_0 = y_i, \quad \forall i = 1, \ldots, n \)
 - One linear equation for each training data point / label pair.

 This is the same basic setup used for least-squares classification!
 - Only the values are now continuous.

 Solution (in matrix notation):
 \[
 \tilde{w} = (\tilde{X}^T \tilde{X})^{-1} \tilde{X} y
 \]
Recap: Probabilistic Regression

- First assumption:
 - Our target function values y are generated by adding noise to the function estimate:

$$y = f(x, w) + \epsilon$$

- Second assumption:
 - The noise is Gaussian distributed.

$$p(y|x, w, \beta) = \mathcal{N}(y|f(x, w), \beta^{-1})$$
Recap: Probabilistic Regression

- **Given**
 - Training data points: \(X = [x_1, \ldots, x_n] \in \mathbb{R}^{d \times n} \)
 - Associated function values: \(y = [y_1, \ldots, y_n]^T \)

- **Conditional likelihood (assuming i.i.d. data)**
 \[
p(y|X, w, \beta) = \prod_{i=1}^{n} \mathcal{N}(y_i|f(x_i, w), \beta^{-1}) = \prod_{i=1}^{n} \mathcal{N}(y_i|w^T \phi(x_i), \beta^{-1})
\]

- Maximize w.r.t. \(w, \beta \)

 \[\Rightarrow\text{ Solution (in matrix notation):}\]

 \[
w_{ML} = (\Phi \Phi^T)^{-1} \Phi y
\]
Recap: Gaussian Process

• Gaussian process:
 - Generalization of a multivariate Gaussian distribution to infinitely many variables.
 - Informally: infinitely long vector \sim function.

• Definition:
 - A Gaussian process is a collection of random variables, any finite number of which have a joint Gaussian distribution.

• Gaussian distribution vs. Gaussian process
 - A Gaussian distribution is fully specified by a mean vector μ and covariance matrix Σ:
 \[f = (f_1, \ldots, f_n)^T \sim \mathcal{N}(\mu, \Sigma) \]
 - A Gaussian process is fully specified by a mean function $m(x)$ and covariance $k(x, x')$:
 \[f(x) \sim \mathcal{GP}(m(x), k(x, x')) \]
Recap: Linear Model - MAP Estimate

- Inference in Bayesian Model
 - Calculation of posterior distribution over the weights
 \[
 p(w|y, X) = \frac{p(y|w, X)p(w, X)}{p(y, X)} = \frac{p(y|w, X)p(w|X)p(X)}{p(y|X)p(X)}
 \]
 \[
 = \frac{p(y|w, X)p(w|X)}{p(y|X)} = \frac{likelihood \times prior}{marginal \ likelihood}
 \]
 Assumption: prior does not depend on training data \(X\).

- Likelihood: \(p(y|w, X) = \mathcal{N}(X^T w, \sigma^2_n I)\)
- Prior, e.g.: \(p(w) = \mathcal{N}(0, \Sigma_p)\)
- Marginal likelihood (normalization constant):
 \[
 p(y|X) = \int p(y|w, X)p(w)dw
 \]
Recap: Linear Model - MAP Estimate

- **Posterior**

\[
p(w|y, X) \propto p(y|w, X)p(w)
\]

\[
= \exp \left\{ -\frac{1}{2\sigma_n^2} (y - X^Tw)^T(y - X^Tw) \right\} \exp \left\{ -\frac{1}{2}w^T\Sigma_p^{-1}w \right\}
\]

\[
= \exp \left\{ -\frac{1}{2}(w - \bar{w})^T A(w - \bar{w}) \right\}
\]

- **with**

\[
A = \left(\frac{1}{\sigma_n^2} XX^T + \Sigma_p^{-1} \right)
\]

\[
\bar{w} = \frac{1}{\sigma_n^2} A^{-1} X y
\]

- **MAP**

 - Is simply mean of \(p(w|y, X) \sim \mathcal{N}(\bar{w}, A^{-1}) \)
Recap: Linear Model - Predictions

- Predictive distribution

\[p(f_*|x_*, y, X) = \mathcal{N}\left(\frac{1}{\sigma_n^2} x_*^T A^{-1} X y, x_*^T A^{-1} x_* \right) \]

- Predictive distribution is again Gaussian.

- **Mean:**
 \[x_*^T \bar{w} \]
 - Uses MAP estimate of weight-vector
 \[\bar{w} = \frac{1}{\sigma_n^2} A^{-1} X y \]

- **Variance:**
 \[x_*^T A^{-1} x_* \]
 - Quadratic form of the test input \(x_* \) with the posterior covariance matrix \(A^{-1} \).
Recap: Non-Linear Model

- Map D-dimensional x into N-dimensional feature space:
 \[x \rightarrow \phi(x) \]

- Linear regression in the N-dimensional space:
 \[f(x) = \phi(x)^T w \]

- Non-linear model:

 - Previous analysis applies analogously by replacing X with
 \[\Phi(X) = (\phi(x_1), \ldots, \phi(x_n)) \]

 \[p(f_*|x_*, y, X) \sim \mathcal{N} \left(\frac{1}{\sigma_n^2} \phi(x_*)^T A^{-1} \Phi(X) y, \phi(x_*)^T A^{-1} \phi(x_*) \right) \]

 - with
 \[A = \frac{1}{\sigma_n^2} \Phi(X) \Phi(X)^T + \Sigma_p^{-1} \]
Recap: GP - Function Space View

• Use a GP to describe a distribution over functions
 ➢ Specification of covariance function implies distribution over functions.
 ➢ I.e. we can draw samples from the distribution of functions evaluated at a (finite) number of points.

➢ Procedure: Sampling from the prior
 - We choose a number of input points \(X_\star \)
 - We write the corresponding covariance matrix (e.g. using squared exponential) element-wise:
 \[K(X_\star, X_\star) \]
 - Then we generate a random Gaussian vector with this covariance matrix:
 \[f_\star \sim \mathcal{N}(0, K(X_\star, X_\star)) \]

Example of 3 functions sampled

Image source: Rasmussen & Williams, 2006
Recap: Prediction with Noise-free Observations

- **Assume our observations are noise-free:**
 \[
 \{(x_i, f_i) | i = 1, \ldots, n\}
 \]
 - **Joint distribution** of the (noise-free) training outputs \(f\) and test outputs \(f^*\) according to the prior:
 \[
 \begin{bmatrix}
 f \\
 f^*
 \end{bmatrix} \sim \mathcal{N}
 \left(0,
 \begin{bmatrix}
 K(X, X) & K(X, X^*) \\
 K(X^*, X) & K(X^*, X^*)
 \end{bmatrix}
 \right)
 \]
 - \(K(X, X^*)\) contains covariances for all training/test point pairs.

- **Calculation of posterior:** simple in GP framework
 - **Conditioning** the joint Gaussian distribution on the observations:
 \[
 f^* | X^*, X, f \sim \mathcal{N}(\bar{f}^*, \text{cov}(f^*))
 \]

 - with
 \[
 \bar{f}^* = K(X^*, X)K(X, X)^{-1}f \\
 \text{cov}(f^*) = K(X^*, X^*) - K(X^*, X)K(X, X)^{-1}K(X, X^*)
 \]
Recap: Prediction with Noisy Observations

Key result: \(f_\star | X_\star, X, y \sim \mathcal{N}(\tilde{f}_\star, \text{cov}(f_\star)) \) with

\[
\tilde{f}_\star = K(X_\star, X) \left(K(X, X) + \sigma_n^2 I \right)^{-1} y
\]

\[
\text{cov}(f_\star) = K(X_\star, X_\star) - K(X_\star, X) \left(K(X, X) + \sigma_n^2 I \right)^{-1} K(X, X_\star)
\]

Observations

- The **mean** can be written in linear form
 \[
 \tilde{f}(x_\star) = k(x_\star, X) \left[K(X, X) + \sigma_n^2 I \right]^{-1} y = \sum_{i=1}^{n} \alpha_i k(x_\star, x_i).
 \]
 - This form is commonly encountered in the kernel literature (**→ SVM**)

- The **variance** is the difference between two terms
 \[
 V(x_\star) = k(x_\star, x_\star) - k(x_\star, X) \left[K(X, X) + \sigma_n^2 I \right]^{-1} k(X, x_\star)
 \]

 Prior variance \quad Explanation of data \(X \)
Recap: Computational Complexity

- Complexity of GP model
 - Training effort: $O(N^3)$ through matrix inversion
 - Test effort: $O(N^2)$ through vector-matrix multiplication

- Complexity of basis function model
 - Training effort: $O(M^3)$
 - Test effort: $O(M^2)$

- Discussion
 - If the number of basis functions M is smaller than the number of data points N, then the basis function model is more efficient.
 - However, advantage of GP viewpoint is that we can consider covariance functions that can only be expressed by an infinite number of basis functions.
 - Still, exact GP methods become infeasible for large training sets.
Recap: Learning Gaussian Processes

- **Goal:** Determine/learn GP parameters
 - Bayesian Model Selection procedure to balance model fit and model complexity

- **Hierarchy of parameters**
 - **Lowest level**
 - w - e.g. parameters of a linear model.
 - **Mid-level (hyperparameters)**
 - θ - e.g. controlling prior distribution of w.
 - **Top level**
 - Typically discrete set of model structures \mathcal{H}_i.

- **Approach**
 - Inference takes place one level at a time.
 - Marginal likelihood of the previous level plays the role of the likelihood of the next level.
Recap: GPs for Classification

- Discriminative approaches for the binary case (2 classes)
 - Idea: place a GP prior over the latent function \(f(x) = x^T w \).
 - “Squash” this function through a nonlinear activation function to convert it into the range [0,1].

- Linear logistic regression model
 - Combines the linear model with a logistic response function
 \[
 p(C_1|x) = \lambda(x^T w) \quad \lambda(z) = \frac{1}{1 + \exp(-z)}
 \]

- Linear probit regression model
 - Combines the linear model with the probit response function (cumulative density function of standard normal distribution)
 \[
 p(C_1|x) = \Phi(x^T w) \quad \Phi(z) = \int_{-\infty}^{z} \mathcal{N}(x|0,1)dx
 \]
Recap: GPs for Classification

• Inference and Prediction

1. Computing the distribution of the latent variable f corresponding to the test case:

$$p(f_*|X, y, x_*) = \int p(f_*|X, x_*, f)p(f|X, y)df$$

 where the posterior over the latent variables is given by

$$p(f|X, y) = \frac{p(y|f)p(f|X)}{p(y|X)}$$

2. Using the distribution over the latent f_* to produce the probabilistic prediction

$$\bar{\pi}_* \triangleq p(y_* = +1|X, y, x_*) = \int \sigma(f_*)p(f_*|X, y, x_*)df_*$$

• Problem: Non-Gaussian likelihood makes the integrals analytically intractable...
Recap: GPs for Non-Linear Dim. Reduction
Any More Questions?

Good luck for the exam!