Machine Learning - Lecture 7
Model Combination & Boosting

12.05.2010

Bastian Leibe
RWTH Aachen
http://www.mmp.rwth-aachen.de

leibe@umic.rwth-aachen.de

Many slides adapted from B. Schiele
Course Outline

- **Fundamentals (2 weeks)**
 - Bayes Decision Theory
 - Probability Density Estimation

- **Discriminative Approaches (4 weeks)**
 - Linear Discriminant Functions
 - Statistical Learning Theory & SVMs
 - Ensemble Methods & Boosting
 - Randomized Trees, Forests & Ferns

- **Generative Models (4 weeks)**
 - Bayesian Networks
 - Markov Random Fields

- **Unifying Perspective (2 weeks)**

B. Leibe
Recap: SVM for Non-Separable Data

- Slack variables
 - One slack variable $\xi_n \geq 0$ for each training data point.

- Interpretation
 - $\xi_n = 0$ for points that are on the correct side of the margin.
 - $\xi_n = |t_n - y(x_n)|$ for all other points.

- We do not have to set the slack variables ourselves!
 \Rightarrow They are jointly optimized together with w.

B. Leibe
Recap: SVM - New Dual Formulation

• New SVM Dual: Maximize

\[L_d(a) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m (x_m^T x_n) \]

under the conditions

\[0 \leq a_n \leq C \]

\[\sum_{n=1}^{N} a_n t_n = 0 \]

• This is again a quadratic programming problem

⇒ Solve as before...

This is all that changed!
Recap: Nonlinear SVMs

- General idea: The original input space can be mapped to some higher-dimensional feature space where the training set is separable:

\[\Phi: x \rightarrow \phi(x) \]
Recap: The Kernel Trick

- Important observation
 - \(\phi(x) \) only appears in the form of dot products \(\phi(x)^T \phi(y) \):
 \[
 y(x) = w^T \phi(x) + b
 \]
 \[
 = \sum_{n=1}^{N} a_n t_n \phi(x_n)^T \phi(x) + b
 \]
 - Define a so-called kernel function \(k(x,y) = \phi(x)^T \phi(y) \).
 - Now, in place of the dot product, use the kernel instead:
 \[
 y(x) = \sum_{n=1}^{N} a_n t_n k(x_n, x) + b
 \]
 - The kernel function \textit{implicitly} maps the data to the higher-dimensional space (without having to compute \(\phi(x) \) explicitly)!
Recap: Kernels Fulfiling Mercer’s Condition

- **Polynomial kernel**
 \[k(x, y) = (x^T y + 1)^p \]

- **Radial Basis Function kernel**
 \[k(x, y) = \exp \left\{ -\frac{(x - y)^2}{2\sigma^2} \right\} \]
 e.g. Gaussian

- **Hyperbolic tangent kernel**
 \[k(x, y) = \tanh(\kappa x^T y + \delta) \]
 e.g. Sigmoid

(and many, many more...)
Recap: Nonlinear SVM - Dual Formulation

- **SVM Dual: Maximize**

\[
L_d(a) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m k(x_m, x_n)
\]

under the conditions

\[
0 \leq a_n \leq C
\]

\[
\sum_{n=1}^{N} a_n t_n = 0
\]

- **Classify new data points using**

\[
y(x) = \sum_{n=1}^{N} a_n t_n k(x_n, x) + b
\]

B. Leibe
So Far...

- We’ve seen already a variety of different classifiers
 - k-NN
 - Bayes classifiers
 - Linear discriminants
 - SVMs

- Each of them has their strengths and weaknesses...
 - Can we improve performance by combining them?
Topics of This Lecture

• Ensembles of Classifiers

• Constructing Ensembles
 - Cross-validation
 - Bagging

• Combining Classifiers
 - Stacking
 - Bayesian model averaging
 - Boosting

• AdaBoost
 - Intuition
 - Algorithm
 - Analysis
 - Extensions

• Applications
Ensembles of Classifiers

• Intuition
 - Assume we have K classifiers.
 - They are independent (i.e. their errors are uncorrelated).
 - Each of them has an error probability $p < 0.5$ on training data.
 - Why can we assume that p won’t be larger than 0.5?
 - Then a simple majority vote of all classifiers should have a lower error than each individual classifier...
Ensembles of Classifiers

• Example
 - \(K \) classifiers with error probability \(p = 0.3 \).
 - Probability that exactly \(L \) classifiers make an error:
 \[
 p^L (1 - p)^{K-L}
 \]
 - The probability that 11 or more classifiers make an error is 0.026.
Topics of This Lecture

• Ensembles of Classifiers

• Constructing Ensembles
 - Cross-validation
 - Bagging

• Combining Classifiers
 - Stacking
 - Bayesian Model Averaging
 - Boosting

• AdaBoost
 - Intuition
 - Algorithm
 - Analysis
 - Extensions

Methods for obtaining a set of classifiers

Methods for combining different classifiers

B. Leibe
Constructing Ensembles

• How do we get different classifiers?
 - Simplest case: train same classifier on different data.
 - But... where shall we get this additional data from?
 - Recall: training data is very expensive!

• Idea: Subsample the training data
 - Reuse the same training algorithm several times on different subsets of the training data.

• Well-suited for “unstable” learning algorithms
 - Unstable: small differences in training data can produce very different classifiers
 - E.g. Decision trees, neural networks, rule learning algorithms,...
 - Stable learning algorithms
 - E.g. Nearest neighbor, linear regression, SVMs,...
Constructing Ensembles

• Cross-Validation
 - Split the available data into N disjunct subsets.
 - In each run, train on N-1 subsets for training a classifier.
 - Estimate the generalization error on the held-out validation set.

• E.g. 5-fold cross-validation

<table>
<thead>
<tr>
<th>train</th>
<th>train</th>
<th>train</th>
<th>train</th>
<th>test</th>
</tr>
</thead>
<tbody>
<tr>
<td>train</td>
<td>train</td>
<td>train</td>
<td>test</td>
<td>train</td>
</tr>
<tr>
<td>train</td>
<td>train</td>
<td>test</td>
<td>train</td>
<td>train</td>
</tr>
<tr>
<td>train</td>
<td>test</td>
<td>train</td>
<td>train</td>
<td>train</td>
</tr>
<tr>
<td>test</td>
<td>train</td>
<td>train</td>
<td>train</td>
<td>train</td>
</tr>
</tbody>
</table>

B. Leibe
Constructing Ensembles

Bagging = “Bootstrap aggregation” (Breiman 1996)

- In each run of the training algorithm, randomly select M samples from the full set of N training data points.
- If $M = N$, then on average, 63.2% of the training points will be represented. The rest are duplicates.

Injecting randomness

- Many (iterative) learning algorithms need a random initialization (e.g. k-means, EM)
- Perform multiple runs of the learning algorithm with different random initializations.
Topics of This Lecture

- **Ensembles of Classifiers**
- **Constructing Ensembles**
 - Cross-validation
 - Bagging
- **Combining Classifiers**
 - Stacking
 - Bayesian Model Averaging
 - Boosting
- **AdaBoost**
 - Intuition
 - Algorithm
 - Analysis
 - Extensions
- **Applications**
Stacking

• Idea
 - Learn L classifiers (based on the training data)
 - Find a meta-classifier that takes as input the output of the L first-level classifiers.

• Example
 - Learn L classifiers with leave-one-out.
 - Interpret the prediction of the L classifiers as L-dimensional feature vector.
 - Learn “level-2” classifier based on the examples generated this way.
Stacking

• Idea
 - Learn L classifiers (based on the training data)
 - Find a meta-classifier that takes as input the output of the L first-level classifiers.

• Example
 - Learn L classifiers with leave-one-out.
 - Interpret the prediction of the L classifiers as L-dimensional feature vector.
 - Learn “level-2” classifier based on the examples generated this way.
Stacking

- Why can this be useful?
 - Simplicity
 - We may already have several existing classifiers available.
 ⇒ No need to retrain those, they can just be combined with the rest.
 - Correlation between classifiers
 - The combination classifier can learn the correlation.
 ⇒ Better results than simple Naïve Bayes combination.
 - Feature combination
 - E.g. combine information from different sensors or sources
 (vision, audio, acceleration, temperature, radar, etc.).
 - We can get good training data for each sensor individually,
 but data from all sensors together is rare.
 ⇒ Train each of the L classifiers on its own input data.
 Only combination classifier needs to be trained on combined input.
Recap: Model Combination

- E.g. Mixture of Gaussians
 - Several components are combined probabilistically.
 - Interpretation: different data points can be generated by different components.
 - We model the uncertainty which mixture component is responsible for generating the corresponding data point:
 \[
 p(x) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x|\mu_k, \Sigma_k)
 \]
 - For iid data, we write the marginal probability of a data set \(X = \{x_1, \ldots, x_N\}\) in the form:
 \[
 p(X) = \prod_{n=1}^{N} p(x_n) = \prod_{n=1}^{N} \sum_{k=1}^{K} \pi_k \mathcal{N}(x_n|\mu_k, \Sigma_k)
 \]
Bayesian Model Averaging

- **Model Averaging**
 - Suppose we have H different models $h = 1, \ldots, H$ with prior probabilities $p(h)$.
 - Construct the marginal distribution over the data set
 \[
 p(X) = \sum_{h=1}^{H} p(X|h)p(h)
 \]

- **Interpretation**
 - Just one model is responsible for generating the entire data set.
 - The probability distribution over h just reflects our uncertainty which model that is.
 - As the size of the data set increases, this uncertainty reduces, and $p(X|h)$ becomes focused on just one of the models.
Note the Different Interpretations!

- **Model Combination**
 - Different data points *generated by different model components*.
 - Uncertainty is about which component created which data point.
 ⇒ One latent variable z_n for each data point:
 \[
 p(X) = \prod_{n=1}^{N} p(x_n) = \prod_{n=1}^{N} \sum_{z_n} p(x_n, z_n)
 \]

- **Bayesian Model Averaging**
 - The whole data set is *generated by a single model*.
 - Uncertainty is about which model was responsible.
 ⇒ One latent variable z for the entire data set:
 \[
 p(X) = \sum_{z} p(X, z)
 \]
Model Averaging: Expected Error

- Combine M predictors $y_m(x)$ for target output $h(x)$.
 - E.g. each trained on a different bootstrap data set by bagging.
 - The committee prediction is given by
 \[
 y_{COM}(x) = \frac{1}{M} \sum_{m=1}^{M} y_m(x)
 \]

- The output can be written as the true value plus some error.
 \[
 y(x) = h(x) + \epsilon(x)
 \]

- Thus, the average sum-of-squares error takes the form
 \[
 \mathbb{E}_x \left[\left\{ y_m(x) - h(x) \right\}^2 \right] = \mathbb{E}_x \left[\epsilon_m(x)^2 \right]
 \]
Model Averaging: Expected Error

- Average error of individual models
\[E_{AV} = \frac{1}{M} \sum_{m=1}^{M} \mathbb{E}_x \left[\epsilon_m(x)^2 \right] \]

- Average error of committee
\[E_{COM} = \mathbb{E}_x \left[\left\{ \frac{1}{M} \sum_{m=1}^{M} y_m(x) - h(x) \right\}^2 \right] = \mathbb{E}_x \left[\left\{ \frac{1}{M} \sum_{m=1}^{M} \epsilon_m(x) \right\}^2 \right] \]

- Assumptions
 - Errors have zero mean: \(\mathbb{E}_x [\epsilon_m(x)] = 0 \)
 - Errors are uncorrelated: \(\mathbb{E}_x [\epsilon_m(x)\epsilon_j(x)] = 0 \)

- Then:
\[E_{COM} = \frac{1}{M} E_{AV} \]

Isn’t this spectacular?

B. Leibe
Model Averaging: Expected Error

- Average error of committee

\[E_{COM} = \frac{1}{M} E_{AV} \]

- This suggests that the average error of a model can be reduced by a factor of \(M \) simply by averaging \(M \) versions of the model!
- Spectacular indeed...
- This sounds almost too good to be true...

- And it is... Can you see where the problem is?
 - Unfortunately, this result depends on the assumption that the errors are all uncorrelated.
 - In practice, they will typically be highly correlated.
 - Still, it can be shown that

\[E_{COM} \leq E_{AV} \]
Boosting

- Simple technique with very interesting properties
 - Combination of multiple classifiers with the goal to improve classification accuracy.
 - Can be used with many different types of classifiers.
 - None of them needs to be too good on its own.
 - In fact, they only have to be slightly better than chance.
 - Extreme case: Decision stumps

\[
y(x) = \begin{cases}
1, & x_i \geq \theta \\
0, & \text{else}
\end{cases}
\]

- Main idea
 - Train successive component classifiers on a subset of the training data that is most informative given the current set of classifiers.

⇒ Sequential classifier selection
Boosting (Schapire 1989)

- Algorithm: (3-component classifier)
 1. Sample $N_1 < N$ training examples (without replacement) from training set \mathcal{D} to get set \mathcal{D}_1.
 - Train weak classifier C_1 on \mathcal{D}_1.
 2. Sample $N_2 < N$ training examples (without replacement), half of which were misclassified by C_1 to get set \mathcal{D}_2.
 - Train weak classifier C_2 on \mathcal{D}_2.
 3. Choose all data in \mathcal{D} on which C_1 and C_2 disagree to get set \mathcal{D}_3.
 - Train weak classifier C_3 on \mathcal{D}_3.
 4. Get the final classifier output by majority voting of C_1, C_2, and C_3.

B. Leibe

Image source: Duda, Hart, Stork, 2001
Applying Boosting

- How should we choose the number of samples N_1?
 - Ideally, the number of samples should be roughly equal in all 3 component classifiers.
 - Reasonable first guess: $N_1 \approx N/3$
 - However, if the problem is very simple
 - C_1 will explain most of the data.
 $\Rightarrow N_2$ and N_3 will be very small.
 \Rightarrow Not all of the data will be used effectively.
 - Similarly, if the problem is extremely hard
 - C_1 will explain only a small part of the data.
 $\Rightarrow N_2$ may be unacceptably large.
 - In practice, may need to run the boosting procedure a few times and adjust N_1 in order to use the full training set.
 - Also, we can recursively apply the procedure on C_1 to C_3.

B. Leibe
Discussion: Ensembles of Classifiers

• Set of simple methods for improving classification
 - Often effective in practice.

• Apparent contradiction
 - We have stressed before that a classifier should be trained on samples from the distribution on which it will be tested.
 - Resampling seems to violate this recommendation.
 - Why can a classifier trained on a weighted data distribution do better than one trained on the i.i.d. sample?

• Explanation
 - We do not attempt to model the full category distribution here.
 - Instead, try to find the decision boundary more directly.
 - Also, increasing number of component classifiers broadens the class of implementable decision functions.
Topics of This Lecture

• Ensembles of Classifiers
• Constructing Ensembles
 ➢ Cross-validation
 ➢ Bagging
• Combining Classifiers
 ➢ Stacking
 ➢ Bayesian model averaging
 ➢ Boosting

• AdaBoost
 ➢ Intuition
 ➢ Algorithm
 ➢ Analysis
 ➢ Extensions
• Applications
AdaBoost - “Adaptive Boosting”

• Main idea
 - Instead of resampling, reweight misclassified training examples.
 - Increase the chance of being selected in a sampled training set.
 - Or increase the misclassification cost when training on the full set.

• Components
 - \(h_m(x) \): “weak” or base classifier
 - Condition: <50% training error over any distribution
 - \(H(x) \): “strong” or final classifier

• AdaBoost:
 - Construct a strong classifier as a thresholded linear combination of the weighted weak classifiers:

\[
H(x) = \text{sign} \left(\sum_{m=1}^{M} \alpha_m h_m(x) \right)
\]
AdaBoost: Intuition

Consider a 2D feature space with **positive** and **negative** examples.

Each weak classifier splits the training examples with at least 50% accuracy.

Examples misclassified by a previous weak learner are given more emphasis at future rounds.

Slide credit: Kristen Grauman
AdaBoost: Intuition

Weak Classifier 1

Weights Increased

Weak Classifier 2

Figure adapted from Freund & Schapire
AdaBoost: Intuition

Final classifier is combination of the weak classifiers

Slide credit: Kristen Grauman

Figure adapted from Freund & Schapire
AdaBoost - Formalization

• 2-class classification problem
 - Given: training set \(X = \{ x_1, \ldots, x_N \} \)
 with target values \(T = \{ t_1, \ldots, t_N \} \), \(t_n \in \{-1,1\} \).
 - Associated weights \(W = \{ w_1, \ldots, w_N \} \) for each training point.

• Basic steps
 - In each iteration, AdaBoost trains a new weak classifier \(h_m(x) \)
 based on the current weighting coefficients \(W^{(m)} \).
 - We then adapt the weighting coefficients for each point
 - Increase \(w_n \) if \(x_n \) was misclassified by \(h_m(x) \).
 - Decrease \(w_n \) if \(x_n \) was classified correctly by \(h_m(x) \).
 - Make predictions using the final combined model
 \[
 H(x) = \text{sign} \left(\sum_{m=1}^{M} \alpha_m h_m(x) \right)
 \]
AdaBoost - Algorithm

1. Initialization: Set \(w_{n}^{(1)} = \frac{1}{N} \) for \(n = 1, \ldots, N \).

2. For \(m = 1, \ldots, M \) iterations
 a) Train a new weak classifier \(h_{m}(x) \) using the current weighting coefficients \(W^{(m)} \) by minimizing the weighted error function
 \[
 J_{m} = \sum_{n=1}^{N} w_{n}^{(m)} I(h_{m}(x) \neq t_{n})
 \]
 b) Estimate the weighted error of this classifier on \(X \):
 \[
 \epsilon_{m} = \frac{\sum_{n=1}^{N} w_{n}^{(m)} I(h_{m}(x) \neq t_{n})}{\sum_{n=1}^{N} w_{n}^{(m)}}
 \]
 c) Calculate a weighting coefficient for \(h_{m}(x) \):
 \[
 \alpha_{m} = ?
 \]
 d) Update the weighting coefficients:
 \[
 w_{n}^{(m+1)} = ?
 \]

How should we do this exactly?

B. Leibe
AdaBoost - Historical Development

• **Originally motivated by Statistical Learning Theory**
 - AdaBoost was introduced in 1996 by Freund & Schapire.
 - It was empirically observed that AdaBoost often tends not to overfit. (Breiman 96, Cortes & Drucker 97, etc.)
 - As a result, the margin theory (Schapire et al. 98) developed, which is based on loose generalization bounds.
 - Note: margin for boosting is *not* the same as margin for SVM.
 - A bit like retrofitting the theory...
 - However, those bounds are too loose to be of practical value.

• **Different explanation** (Friedman, Hastie, Tibshirani, 2000)
 - Interpretation as sequential minimization of an exponential error function (“Forward Stagewise Additive Modeling”).
 - Explains why boosting works well.
 - Improvements possible by altering the error function.
AdaBoost - Minimizing Exponential Error

- Exponential error function

\[E = \sum_{n=1}^{N} \exp \{-t_n f_m(x_n)\} \]

- where \(f_m(x) \) is a classifier defined as a linear combination of base classifiers \(h_l(x) \):

\[f_m(x) = \frac{1}{2} \sum_{l=1}^{m} \alpha_l h_l(x) \]

- Goal

 - Minimize \(E \) with respect to both the weighting coefficients \(\alpha_l \) and the parameters of the base classifiers \(h_l(x) \).
AdaBoost - Minimizing Exponential Error

• Sequential Minimization
 - Suppose that the base classifiers $h_1(x), \ldots, h_{m-1}(x)$ and their coefficients $\alpha_1, \ldots, \alpha_{m-1}$ are fixed.
 - Only minimize with respect to α_m and $h_m(x)$.

$$E = \sum_{n=1}^{N} \exp \left\{ -t_n f_m(x_n) \right\} \quad \text{with} \quad f_m(x) = \frac{1}{2} \sum_{l=1}^{m} \alpha_l h_l(x)$$

$$= \sum_{n=1}^{N} \exp \left\{ -t_n f_{m-1}(x_n) - \frac{1}{2} t_n \alpha_m h_m(x_n) \right\}$$

$$= \text{const.}$$

$$= \sum_{n=1}^{N} w_n^{(m)} \exp \left\{ -\frac{1}{2} t_n \alpha_m h_m(x_n) \right\}$$

B. Leibe
AdaBoost - Minimizing Exponential Error

\[E = \sum_{n=1}^{N} w_n^{(m)} \exp \left\{ -\frac{1}{2} t_n \alpha_m h_m(x_n) \right\} \]

- **Observation:**
 - Correctly classified points: \(t_n h_m(x_n) = +1 \) \(\Rightarrow \) collect in \(T_m \)
 - Misclassified points: \(t_n h_m(x_n) = -1 \) \(\Rightarrow \) collect in \(F_m \)

- **Rewrite the error function as**

\[
E = e^{-\alpha_m/2} \sum_{n \in T_m} w_n^{(m)} + e^{\alpha_m/2} \sum_{n \in F_m} w_n^{(m)}
\]

\[
= \left(e^{\alpha_m/2} \right) \sum_{n=1}^{N} w_n^{(m)} I(h_m(x_n) \neq t_n)
\]

B. Leibe
AdaBoost - Minimizing Exponential Error

\[E = \sum_{n=1}^{N} w^{(m)}_{n} \exp \left\{ -\frac{1}{2} t_{n} \alpha_{m} h_{m}(x_{n}) \right\} \]

- **Observation:**
 - Correctly classified points: \(t_{n} h_{m}(x_{n}) = +1 \) \(\Rightarrow \) collect in \(\mathcal{T}_{m} \)
 - Misclassified points: \(t_{n} h_{m}(x_{n}) = -1 \) \(\Rightarrow \) collect in \(\mathcal{F}_{m} \)

- **Rewrite the error function as**

\[E = e^{-\alpha_{m}/2} \sum_{n \in \mathcal{T}_{m}} w^{(m)}_{n} + e^{\alpha_{m}/2} \sum_{n \in \mathcal{F}_{m}} w^{(m)}_{n} \]

\[= \left(e^{\alpha_{m}/2} - e^{-\alpha_{m}/2} \right) \sum_{n=1}^{N} w^{(m)}_{n} I(h_{m}(x_{n}) \neq t_{n}) + e^{-\alpha_{m}/2} \sum_{n=1}^{N} w^{(m)}_{n} \]

B. Leibe
AdaBoost - Minimizing Exponential Error

• Minimize with respect to \(h_m(x) \):
 \[
 \frac{\partial E}{\partial h_m(x_n)} = 0
 \]
 \[
 E = \left(e^{\alpha_m/2} - e^{-\alpha_m/2} \right) \sum_{n=1}^{N} w_n^{(m)} I(h_m(x_n) \neq t_n) + e^{-\alpha_m/2} \sum_{n=1}^{N} w_n^{(m)}

 = \text{const.}
 \]

⇒ This is equivalent to minimizing

\[
J_m = \sum_{n=1}^{N} w_n^{(m)} I(h_m(x) \neq t_n)
\]

(our weighted error function from step 2a) of the algorithm)

⇒ We’re on the right track. Let’s continue...
AdaBoost - Minimizing Exponential Error

- Minimize with respect to α_m:
 \[
 \frac{\partial E}{\partial \alpha_m} = 0
 \]

 \[
 E = \left(e^{\alpha_m/2} - e^{-\alpha_m/2} \right) \sum_{n=1}^{N} w^{(m)}_n I(h_m(x_n) \neq t_n) + e^{-\alpha_m/2} \sum_{n=1}^{N} w^{(m)}_n
 \]

 \[
 \left(\frac{1}{2} e^{\alpha_m/2} + \frac{1}{2} e^{-\alpha_m/2} \right) \sum_{n=1}^{N} w^{(m)}_n I(h_m(x_n) \neq t_n) = \frac{1}{2} e^{-\alpha_m/2} \sum_{n=1}^{N} w^{(m)}_n
 \]

 Weighted error $\epsilon_m := \frac{\sum_{n=1}^{N} w^{(m)}_n I(h_m(x_n) \neq t_n)}{\sum_{n=1}^{N} w^{(m)}_n} = \frac{e^{-\alpha_m/2}}{e^{\alpha_m/2} + e^{-\alpha_m/2}}$

 \[
 \epsilon_m = \frac{1}{e^{\alpha_m} + 1}
 \]

 ⇒ Update for the α coefficients:

 \[
 \alpha_m = \ln \left(\frac{1 - \epsilon_m}{\epsilon_m} \right)
 \]
AdaBoost - Minimizing Exponential Error

- Remaining step: update the weights
 - Recall that
 \[E = \sum_{n=1}^{N} w_n^{(m)} \exp \left\{ -\frac{1}{2} t_n \alpha_m h_m(x_n) \right\} \]
 This becomes \(w_n^{(m+1)} \) in the next iteration.
 - Therefore
 \[w_n^{(m+1)} = w_n^{(m)} \exp \left\{ -\frac{1}{2} t_n \alpha_m h_m(x_n) \right\} = \ldots = w_n^{(m)} \exp \{ \alpha_m I(h_m(x_n) \neq t_n) \} \]
 \(\Rightarrow \) Update for the weight coefficients.

B. Leibe
AdaBoost - Final Algorithm

1. **Initialization:** Set \(w_n^{(1)} = \frac{1}{N} \) for \(n = 1, \ldots, N \).

2. **For** \(m = 1, \ldots, M \) **iterations**

 a) Train a new weak classifier \(h_m(x) \) using the current weighting coefficients \(W^{(m)} \) by minimizing the weighted error function

 \[
 J_m = \sum_{n=1}^{N} w_n^{(m)} I(h_m(x) \neq t_n)
 \]

 b) Estimate the weighted error of this classifier on \(X \):

 \[
 \epsilon_m = \frac{\sum_{n=1}^{N} w_n^{(m)} I(h_m(x) \neq t_n)}{\sum_{n=1}^{N} w_n^{(m)}}
 \]

 c) Calculate a weighting coefficient for \(h_m(x) \):

 \[
 \alpha_m = \ln \left\{ \frac{1 - \epsilon_m}{\epsilon_m} \right\}
 \]

 d) Update the weighting coefficients:

 \[
 w_n^{(m+1)} = w_n^{(m)} \exp \{ \alpha_m I(h_m(x_n) \neq t_n) \}
 \]
AdaBoost - Analysis

• Result of this derivation
 ➢ We now know that AdaBoost minimizes an exponential error function in a sequential fashion.
 ➢ This allows us to analyze AdaBoost’s behavior in more detail.
 ➢ In particular, we can see how robust it is to outlier data points.
Comparing Error Functions

- Ideal misclassification error function (black)
 - This is what we want to approximate.
 - Unfortunately, it is not differentiable.
 \[\Rightarrow \text{We cannot minimize it by gradient descent.} \]
Comparing Error Functions

- Ideal misclassification error function
- “Hinge error” used in SVMs
 - Zero error for points outside the margin ($z>1$).
 - Linearly increasing error for misclassified points ($z<1$).

Image source: Bishop, 2006
Comparing Error Functions

- Ideal misclassification error function
- “Hinge error” used in SVMs
- Exponential error function
 - Continuous approximation to ideal misclassification function.
 - Sequential minimization leads to simple AdaBoost scheme.
 - Disadvantage: exponential penalty for large negative values!

⇒ Less robust to outliers or misclassified data points!

B. Leibe

Image source: Bishop, 2006
Comparing Error Functions

- Ideal misclassification error function
- “Hinge error” used in SVMs
- Exponential error function
- “Cross-entropy error” \[E = - \sum \{ t_n \ln y_n + (1 - t_n) \ln (1 - y_n) \} \]
 - Similar to exponential error for \(z > 0 \).
 - Only grows linearly with large negative values of \(z \).
 \(\Rightarrow \) Make AdaBoost more robust by switching \(\Rightarrow \) “GentleBoost”

Image source: Bishop, 2006
Summary: AdaBoost

• Properties
 - Simple combination of multiple classifiers.
 - Easy to implement.
 - Can be used with many different types of classifiers.
 - None of them needs to be too good on its own.
 - In fact, they only have to be slightly better than chance.
 - Commonly used in many areas.
 - Empirically good generalization capabilities.

• Limitations
 - Original AdaBoost sensitive to misclassified training data points.
 - Because of exponential error function.
 - Improvement by GentleBoost
 - Single-class classifier
 - Multiclass extensions available
Topics of This Lecture

- Ensembles of Classifiers
- Constructing Ensembles
 - Cross-validation
 - Bagging
- Combining Classifiers
 - Stacking
 - Bayesian model averaging
 - Boosting
- AdaBoost
 - Intuition
 - Algorithm
 - Analysis
 - Extensions
- Applications
Example Application: Face Detection

- Frontal faces are a good example of a class where global appearance models + a sliding window detection approach fit well:
 - Regular 2D structure
 - Center of face almost shaped like a “patch”/window

- Now we’ll take AdaBoost and see how the Viola-Jones face detector works
Feature extraction

“Rectangular” filters

Feature output is difference between adjacent regions

Efficiently computable with integral image: any sum can be computed in constant time

Avoid scaling images → scale features directly for same cost

Value at (x,y) is sum of pixels above and to the left of (x,y)

Integral image

$$D = 1 + 4 - (2 + 3) = A + (A + B + C + D) - (A + C + A + B) = D$$

Slide credit: Kristen Grauman

B. Leibe

[Viola & Jones, CVPR 2001]
Large Library of Filters

Considering all possible filter parameters: position, scale, and type:

180,000+ possible features associated with each 24 x 24 window

Use AdaBoost both to select the informative features and to form the classifier

[Viola & Jones, CVPR 2001]
AdaBoost for Feature+Classifier Selection

- Want to select the single rectangle feature and threshold that best separates **positive** (faces) and **negative** (non-faces) training examples, in terms of **weighted** error.

Resulting weak classifier:

\[
h_t(x) = \begin{cases}
+1 & \text{if } f_t(x) > \theta_t \\
-1 & \text{otherwise}
\end{cases}
\]

For next round, reweight the examples according to errors, choose another filter/threshold combo.

Slide credit: Kristen Grauman
AdaBoost for Efficient Feature Selection

- Image features = weak classifiers
- For each round of boosting:
 - Evaluate each rectangle filter on each example
 - Sort examples by filter values
 - Select best threshold for each filter (min error)
 - Sorted list can be quickly scanned for the optimal threshold
 - Select best filter/threshold combination
 - Weight on this features is a simple function of error rate
 - Reweight examples

Viola-Jones Face Detector: Results

Slide credit: Kristen Grauman
Viola-Jones Face Detector: Results

Slide credit: Kristen Grauman
Viola-Jones Face Detector: Results
References and Further Reading

- More information on Classifier Combination and Boosting can be found in Chapters 14.1-14.3 of Bishop’s book.

 Christopher M. Bishop
 Pattern Recognition and Machine Learning
 Springer, 2006

- A more in-depth discussion of the statistical interpretation of AdaBoost is available in the following paper: