Recap: Stacking

- **Idea**
 - Learn L classifiers (based on the training data)
 - Find a meta-classifier that takes as input the output of the L first-level classifiers.
 - Example
 - Learn L classifiers with leave-one-out.
 - Interpret the prediction of the L classifiers as L-dimensional feature vector.
 - Learn “level-2” classifier based on the examples generated this way.

- **Example**
 - Learn L classifiers with leave-one-out.
 - Interpret the prediction of the L classifiers as L-dimensional feature vector.
 - Learn “level-2” classifier based on the examples generated this way.

Recap: Bayesian Model Averaging

- **Model Averaging**
 - Suppose we have H different models $h = 1, \ldots, H$ with prior probabilities $p(h)$.
 - Construct the marginal distribution over the data set
 \[
 p(X) = \sum_{h=1}^{H} p(X|h)p(h)
 \]
 - **Average error of committee**
 \[
 E_{\text{COM}} = \frac{1}{M} E_{\text{AV}}
 \]
 - This suggests that the average error of a model can be reduced by a factor of M simply by averaging M versions of the model.
 - Unfortunately, this assumes that the errors are all uncorrelated.
 - In practice, they will typically be highly correlated.

Recap: Boosting (Schapire 1989)

- **Algorithm:** (3-component classifier)
 1. Sample $N < N$ training examples (without replacement) from training set D to get set D_1.
 2. Sample $N < N$ training examples (without replacement), half of which were misclassified by C_1, to get set D_2.
 3. Choose all data in D_1 on which C_1 and C_2 disagree to get set D_3.
 4. Get the final classifier output by majority voting on C_1, C_2, and C_3.

Course Outline

- **Fundamentals** (2 weeks)
 - Bayes Decision Theory
 - Probability Density Estimation
- **Discriminative Approaches** (4 weeks)
 - Linear Discriminant Functions
 - Statistical Learning Theory & SVMs
 - Ensemble Methods & Boosting
 - Decision Trees & Randomized Trees
- **Generative Models** (4 weeks)
 - Bayesian Networks
 - Markov Random Fields
- **Unifying Perspective** (2 weeks)
Recap: AdaBoost - “Adaptive Boosting”

- **Main idea** [Freund & Schapire, 1996]
 - Instead of resampling, reweight misclassified training examples.
 - Increase the chance of being selected in a sampled training set.
 - Or increase the misclassification cost when training on the full set.

- **Components**
 - \(h_m(x): \) “weak” or base classifier
 - Condition: <50% training error over any distribution
 - \(H(x): \) “strong” or final classifier

- **AdaBoost:**
 - Construct a strong classifier as a thresholded linear combination of the weighted weak classifiers:
 \[
 H(x) = \text{sign} \left(\sum_{m=1}^{M} \alpha_m h_m(x) \right)
 \]

Recap: AdaBoost - Intuition

Consider a 2D feature space with **positive** and **negative** examples.

Each weak classifier splits the training examples with at least 50% accuracy.

Examples misclassified by a previous weak learner are given more emphasis at future rounds.

Recap: AdaBoost - Algorithm

1. **Initialization:** Set \(w_1^{(n)} = \frac{1}{N} \) for \(n = 1, ..., N \).
2. For \(m = 1, ..., M \) iterations
 a. Train a new weak classifier \(h_m(x) \) using the current weighting coefficients \(W^{(m)} \) by minimizing the weighted error function
 \[
 J_m = \sum_{n=1}^{N} w_1^{(n)} I(h_m(x) \neq t_n) \quad I(4) = \begin{cases} 1, & \text{if } A \text{ is true} \\ 0, & \text{else} \end{cases}
 \]
 b. Estimate the weighted error of this classifier on \(X \):
 \[
 \epsilon_m = \frac{1}{N} \sum_{n=1}^{N} w_1^{(n)} I(h_m(x) \neq t_n)
 \]
 c. Calculate a weighting coefficient for \(h_m(x) \):
 \[
 \alpha_m = \ln \left(\frac{1}{\epsilon_m} \right)
 \]
 d. Update the weighting coefficients:
 \[
 w_1^{(n+1)} = w_1^{(n)} \exp \left\{ \alpha_m I[h_m(x_n) \neq t_n] \right\}
 \]

Recap: Comparing Error Functions

- **Ideal misclassification error function**
- "Hinge error" used in SVMs
- **Exponential error function**
 - Continuous approximation to ideal misclassification function.
 - Sequential minimization leads to simple AdaBoost scheme.
 - Disadvantage: exponential penalty for large negative values!
 - Less robust to outliers or misclassified data points!
Recap: Comparing Error Functions

- Ideal misclassification error function
- “Hinge error” used in SVMs
- Exponential error function
- “Cross-entropy error”
 - Similar to exponential error for \(z > 0 \).
 - Only grows linearly with large negative values of \(z \).

\[
E = -\sum\{ t_n \ln y_n + (1 - t_n) \ln(1 - y_n) \}
\]

Ideal misclassification error function

"Hinge error" used in SVMs

Exponential error function

“Cross-entropy error”

Topics of This Lecture

- Decision Trees
 - CART
 - Impurity measures
 - Stopping criterion
 - Pruning
 - Extensions
 - Issues
 - Historical development: ID3, C4.5

- Random Forests
 - Basic idea
 - Bootstrap sampling
 - Randomized attribute selection
 - Applications

Recap: Comparing Error Functions

- Decision Trees
 - Very old technique
 - Origin in the 60s, might seem outdated.
 - But...
 - Can be used for problems with nominal data
 - E.g. attributes color \(\in \{\text{red}, \text{green}, \text{blue}\} \) or weather \(\in \{\text{sunny}, \text{rainy}\} \).
 - Discrete values, no notion of similarity or even ordering.
 - Interpretable results
 - Learned trees can be written as sets of if-then rules.
 - Methods developed for handling missing feature values.
 - Successfully applied to broad range of tasks
 - E.g. Medical diagnosis
 - E.g. Credit risk assessment of loan applicants
 - Some interesting novel developments building on top of them...

Decision Trees

- Example:
 - “Classify Saturday mornings according to whether they’re suitable for playing tennis.”

- Elements
 - Each node specifies a test for some attribute.
 - Each branch corresponds to a possible value of the attribute.

Decision Trees

- Assumption
 - Links must be mutually distinct and exhaustive
 - I.e. one and only one link will be followed at each step.

- Interpretability
 - Information in a tree can then be rendered as logical expressions.
 - In our example:
 \[
 \text{Outlook} = \text{Sunny} \land \text{Humidity} = \text{Normal}
 \]
 \[
 \lor (\text{Outlook} = \text{Overcast})
 \]
 \[
 \lor (\text{Outlook} = \text{Rain} \land \text{Wind} = \text{Weak})
 \]
Training Decision Trees

- Finding the optimal decision tree is NP-hard...
- Common procedure: Greedy top-down growing
 - Start at the root node.
 - Progressively split the training data into smaller and smaller subsets.
 - In each step, pick the best attribute to split the data.
 - If the resulting subsets are pure (only one label) or if no further attribute can be found that splits them, terminate the tree.
 - Else, recursively apply the procedure to the subsets.
- **CART framework**
 - Classification And Regression Trees (Breiman et al. 1993)
 - Formalization of the different design choices.

CART Framework

- Six general questions
 1. Binary or multi-valued problem? (i.e. how many splits should there be at each node?)
 2. Which property should be tested at a node? (i.e. how to select the query attribute?)
 3. When should a node be declared a leaf? (i.e. when to stop growing the tree?)
 4. How can a grown tree be simplified or pruned? (Goal: reduce overfitting)
 5. How to deal with impure nodes? (i.e. when the data itself is ambiguous)
 6. How should missing attributes be handled?

CART - 1. Number of Splits

- Each multi-valued tree can be converted into an equivalent binary tree:

\Rightarrow Only consider binary trees here...

CART - 2. Picking a Good Splitting Feature

- Goal
 - Want a tree that is as simple/small as possible (Occam’s razor).
 - But: Finding a minimal tree is an NP-hard optimization problem.
- Greedy top-down search
 - Efficient, but not guaranteed to find the smallest tree.
 - Seek a property T at each node N that makes the data in the child nodes as pure as possible.
 - For formal reasons more convenient to define impurity $i(N)$.
 - Several possible definitions explored.

CART - Impurity Measures

- Misclassification impurity

$$i(N) = 1 - \max_j \frac{|C_j|}{|N|}$$

“Fraction of the training patterns in category C_j that end up in node N.”

- Entropy impurity

$$i(N) = -\sum_j \frac{|C_j|}{|N|} \log_2 \frac{|C_j|}{|N|}$$

“Reduction in entropy = gain in information.”
CART – Overfitting Prevention (Pruning)

- Which impurity measure should we choose?
 - Some problems with misclassification impurity:
 - Discontinuous derivative.
 - Problems when searching over continuous parameter space.
 - Sometimes misclassification impurity does not decrease when Gini impurity would.
 - Both entropy impurity and Gini impurity perform well.
 - No big difference in terms of classifier performance.
 - In practice, stopping criterion and pruning method are often more important.

- For efficiency, splits are often based on a single feature
 - "Monothetic decision trees"

- Evaluating candidate splits
 - Nominal attributes: exhaustive search over all possibilities.
 - Real-valued attributes: only need to consider changes in label.
 - Order all data points based on attribute \(x_i \).
 - Only need to test candidate splits where \(\text{label}(x_i) \neq \text{label}(x_{i+1}) \).

CART – Impurity Measures

- Which impurity measure should we choose?
 - Some problems with misclassification impurity.
 - Discontinuous derivative.
 - Problems when searching over continuous parameter space.
 - Sometimes misclassification impurity does not decrease when Gini impurity would.
 - Both entropy impurity and Gini impurity perform well.
 - No big difference in terms of classifier performance.
 - In practice, stopping criterion and pruning method are often more important.

- For efficiency, splits are often based on a single feature
 - "Monothetic decision trees"

- Evaluating candidate splits
 - Nominal attributes: exhaustive search over all possibilities.
 - Real-valued attributes: only need to consider changes in label.
 - Order all data points based on attribute \(x_i \).
 - Only need to test candidate splits where \(\text{label}(x_i) \neq \text{label}(x_{i+1}) \).

CART – Picking a Good Splitting Feature

- Application
 - Select the query that decreases impurity the most
 \[
 \Delta i(N) = i(N) - \sum_{k=1}^{K} P_k i(N_k) - (1 - P_k) i(N_R)
 \]

- Multiway generalization (gain ratio impurity):
 - Maximize
 \[
 \Delta i(s) = \frac{1}{2} \left(i(N) - \sum_{k=1}^{K} P_k i(N_k) \right)
 \]
 - where the normalization factor ensures that large \(K \) are not inherently favored:
 \[
 Z = - \sum_{k=1}^{K} P_k \log_2 P_k
 \]

CART – Impurity Measures

- Which impurity measure should we choose?
 - Some problems with misclassification impurity.
 - Discontinuous derivative.
 - Problems when searching over continuous parameter space.
 - Sometimes misclassification impurity does not decrease when Gini impurity would.
 - Both entropy impurity and Gini impurity perform well.
 - No big difference in terms of classifier performance.
 - In practice, stopping criterion and pruning method are often more important.

- For efficiency, splits are often based on a single feature
 - "Monothetic decision trees"

- Evaluating candidate splits
 - Nominal attributes: exhaustive search over all possibilities.
 - Real-valued attributes: only need to consider changes in label.
 - Order all data points based on attribute \(x_i \).
 - Only need to test candidate splits where \(\text{label}(x_i) \neq \text{label}(x_{i+1}) \).

CART – Picking a Good Splitting Feature

- Application
 - Select the query that decreases impurity the most
 \[
 \Delta i(N) = i(N) - \sum_{k=1}^{K} P_k i(N_k) - (1 - P_k) i(N_R)
 \]

- Multiway generalization (gain ratio impurity):
 - Maximize
 \[
 \Delta i(s) = \frac{1}{2} \left(i(N) - \sum_{k=1}^{K} P_k i(N_k) \right)
 \]
 - where the normalization factor ensures that large \(K \) are not inherently favored:
 \[
 Z = - \sum_{k=1}^{K} P_k \log_2 P_k
 \]

CART – Impurity Measures

- Which impurity measure should we choose?
 - Some problems with misclassification impurity.
 - Discontinuous derivative.
 - Problems when searching over continuous parameter space.
 - Sometimes misclassification impurity does not decrease when Gini impurity would.
 - Both entropy impurity and Gini impurity perform well.
 - No big difference in terms of classifier performance.
 - In practice, stopping criterion and pruning method are often more important.

- For efficiency, splits are often based on a single feature
 - "Monothetic decision trees"

- Evaluating candidate splits
 - Nominal attributes: exhaustive search over all possibilities.
 - Real-valued attributes: only need to consider changes in label.
 - Order all data points based on attribute \(x_i \).
 - Only need to test candidate splits where \(\text{label}(x_i) \neq \text{label}(x_{i+1}) \).

CART – Impurity Measures

- Which impurity measure should we choose?
 - Some problems with misclassification impurity.
 - Discontinuous derivative.
 - Problems when searching over continuous parameter space.
 - Sometimes misclassification impurity does not decrease when Gini impurity would.
 - Both entropy impurity and Gini impurity perform well.
 - No big difference in terms of classifier performance.
 - In practice, stopping criterion and pruning method are often more important.

- For efficiency, splits are often based on a single feature
 - "Monothetic decision trees"

- Evaluating candidate splits
 - Nominal attributes: exhaustive search over all possibilities.
 - Real-valued attributes: only need to consider changes in label.
 - Order all data points based on attribute \(x_i \).
 - Only need to test candidate splits where \(\text{label}(x_i) \neq \text{label}(x_{i+1}) \).
CART - Stopping Criterion

- Determining which subtrees to prune:
 - Cross-validation: Reserve some training data as a hold-out set (validation set, tuning set) to evaluate utility of subtrees.
 - Statistical test: Determine if any observed regularity can be dismissed as likely due to random chance.
 - Chi-squared statistic (one degree of freedom)
 \[
 \chi^2 = \sum_{i=1}^{N} \frac{(n_{i} - \hat{n}_{i})^2}{\hat{n}_{i}}
 \]
 “expected number from random split”
 - Compare to critical value at certain confidence level (table lookup).
 - Minimum description length (MDL): Determine if the additional complexity of the hypothesis is less complex than just explicitly remembering any exceptions resulting from pruning.

(Post-)Pruning Strategies

- Common strategies
 - Merging leaf nodes
 - Consider pairs of neighboring leaf nodes.
 - If their elimination results only in small increase in impurity, prune them.
 - Procedure can be extended to replace entire subtrees with leaf node directly.
 - Rule-based pruning
 - Each leaf has an associated rule (conjunction of individual decisions).
 - Full tree can be described by list of rules.
 - Can eliminate irrelevant preconditions to simplify the rules.
 - Can eliminate rules to improve accuracy on validation set.
 - Advantage: can distinguish between the contexts in which the decision rule at a node is used \(\Rightarrow \) can prune them selectively.

Decision Trees - Feature Choice

- Best results if proper features are used
 - Preprocessing to find important axes often pays off.

Decision Trees - Non-Uniform Cost

- Incorporating category priors
 - Often desired to incorporate different priors for the categories.
 - Solution: weight samples to correct for the prior frequencies.

- Incorporating non-uniform loss
 - Create loss matrix \(\lambda_{ij} \)
 - Loss can easily be incorporated into Gini impurity
 \[
 i(N) = \sum_{ij} \lambda_{ij}p(C_i)p(C_j)
 \]
Summary: Decision Trees

- **Limitations**
 - Often produce noisy (bushy) or weak (stunted) classifiers.
 - Do not generalize too well.
 - Training data fragmentation:
 - As tree progresses, splits are selected based on less and less data.
 - Overtraining and undertraining:
 - Deep trees: fit the training data well, will not generalize well to new test data.
 - Shallow trees: not sufficiently refined.
 - Stability:
 - Trees can be very sensitive to details of the training points.
 - If a single data point is only slightly shifted, a radically different tree may come out!
 - Result of discrete and greedy learning procedure.
 - Expensive learning step
 - Mostly due to costly selection of optimal split.

Topics of This Lecture

- **Decision Trees**
 - CART
 - Impurity measures
 - Stopping criterion
 - Pruning
 - Evaluations
 - Historical development: ID3, C4.5
- **Random Forests**
 - Basic idea
 - Bootstrap sampling
 - Randomized attribute selection
 - Applications
Random Forests (Breiman 2001)

- Ensemble method
 - Idea: Create ensemble of many (very simple) trees.
- Empirically very good results
 - Often as good as SVMs (and sometimes better)!
 - Often as good as Boosting (and sometimes better)!
- Standard decision trees: main effort on finding good split
 - Random Forests trees put very little effort in this.
 - CART algorithm with Gini coefficient, no pruning.
 - Each split is only made based on a random subset of the available attributes.
 - Trees are grown fully (important!).
- Main secret
 - Injecting the “right kind of randomness”.

Random Forests - Algorithmic Goals

- Create many trees (50 - 1,000)
- Inject randomness into trees such that
 - Each tree has maximal strength
 - I.e. a fairly good model on its own
 - Each tree has minimum correlation with the other trees.
 - I.e. the errors tend to cancel out.
- Ensemble of trees votes for final result
 - Simple majority vote for category.
 - Alternative (Friedman)
 - Optimally reweight the trees via regularized regression (lasso).

Random Forests - Injecting Randomness (1)

- Bootstrap sampling process
 - Select a training set by choosing \(N \) times with replacement from all \(N \) available training examples.
 - On average, each tree is grown on only ~63% of the original training data.
 - Remaining 37% “out-of-bag” (OOB) data used for validation.
 - Provides ongoing assessment of model performance.
 - Allows fitting to small data sets without explicitly holding back any data for testing.

Random Forests - Injecting Randomness (2)

- Random attribute selection
 - For each node, randomly choose subset of \(T \) attributes on which the split is based (typically square root of number available).
 - Evaluate splits only on OOB data (out-of-bag estimate).
 - Very fast training procedure
 - Need to test few attributes.
 - Evaluate only on ~37% of the data.
 - Minimizes inter-tree dependence
 - Reduce correlation between different trees.
 - Each tree is grown to maximal size and is left unpruned
 - Trees are deliberately overfit
 - Become some form of nearest-neighbor predictor.

Big Question

How can this ever possibly work???
A Graphical Interpretation

Different trees induce different partitions on the data.

By combining them, we obtain a finer subdivision of the feature space...

...which at the same time also better reflects the uncertainty due to the bootstrapped sampling.

Summary: Random Forests

- **Properties**
 - Very simple algorithm.
 - Resistant to overfitting - generalizes well to new data.
 - Very rapid training
 - Also often used for online learning.
 - Extensions available for clustering, distance learning, etc.

- **Limitations**
 - Memory consumption
 - Decision tree construction uses much more memory.
 - Well-suited for problems with little training data
 - Little performance gain when training data is really large.

You Can Try It At Home...

- Free implementations available
 - Original RF implementation by Breiman & Cutler
 - Code + documentation
 - In Fortran 77
 - But also newer version available in Fortran 90!
 - Fast Random Forest implementation for Java (Weka)

Applications

- **Computer Vision: fast keypoint detection**
 - Detect keypoints: small patches in the image used for matching
 - Classify into one of ~200 categories (visual words)

- **Extremely simple features**
 - E.g. pixel value in a color channel (CIELab)
 - E.g. sum of two points in the patch
 - E.g. difference of two points in the patch
 - E.g. absolute difference of two points

- **Create forest of randomized decision trees**
 - Each leaf node contains probability distribution over 200 classes
 - Can be updated and re-normalized incrementally
Application: Fast Keypoint Detection

References and Further Reading

- More information on Decision Trees can be found in Chapters 8.2-8.4 of Duda & Hart.

R.O. Duda, P.E. Hart, D.G. Stork
Pattern Classification
2nd Ed., Wiley-Interscience, 2000

- The original paper for Random Forests: