Machine Learning - Lecture 11

Introduction to Graphical Models

16.06.2010

Bastian Leibe
RWTH Aachen
http://www.mmp.rwth-aachen.de
leibe@umic.rwth-aachen.de

Many slides adapted from B. Schiele, S. Roth

Course Outline

• Fundamentals (2 weeks)
 - Bayes Decision Theory
 - Probability Density Estimation
• Discriminative Approaches (4 weeks)
 - Lin. Discriminants, SVMs, Boosting
• Generative Models (4 weeks)
 - Bayesian Networks
 - Markov Random Fields
 - Exact Inference
 - Approximate Inference
• Unifying Perspective (2 weeks)

Graphical Models - What and Why?

• It’s got nothing to do with graphics!

• Probabilistic graphical models
 - Marriage between probability theory and graph theory.
 - Formalize and visualize the structure of a probabilistic model through a graph.
 - Give insights into the structure of a probabilistic model.
 - Find efficient solutions using methods from graph theory.
 - Natural tool for dealing with uncertainty and complexity.
 - Becoming increasingly important for the design and analysis of machine learning algorithms.
 - Often seen as new and promising way to approach problems related to Artificial Intelligence.

Topics of This Lecture

• Graphical Models
 - Introduction

• Directed Graphical Models (Bayesian Networks)
 - Notation
 - Conditional probabilities
 - Computing the joint probability
 - Factorization
 - Conditional Independence
 - D-Separation
 - Explaining away

• Outlook: Inference in Graphical Models

Graphical Models

• There are two basic kinds of graphical models
 - Directed graphical models or Bayesian Networks
 - Undirected graphical models or Markov Random Fields

• Key components
 - Nodes
 - Edges
 - Directed or undirected

Directed graphical model
Undirected graphical model

Topics of This Lecture

• Graphical Models
 - Introduction

• Directed Graphical Models (Bayesian Networks)
 - Notation
 - Conditional probabilities
 - Computing the joint probability
 - Factorization
 - Conditional Independence
 - D-Separation
 - Explaining away

• Outlook: Inference in Graphical Models
Example: Wet Lawn

- Mr. Holmes leaves his house.
 - He sees that the lawn in front of his house is wet.
 - This can have several reasons: Either it rained, or Holmes forgot to shut the sprinkler off.
 - Without any further information, the probability of both events (rain, sprinkler) increases (knowing that the lawn is wet).

- Now Holmes looks at his neighbor’s lawn
 - The neighbor’s lawn is also wet.
 - This information increases the probability that it rained. And it lowers the probability for the sprinkler.

⇒ How can we encode such probabilistic relationships?

Directed Graphical Models

- or Bayesian networks
 - Are based on a directed graph.
 - The nodes correspond to the random variables.
 - The directed edges correspond to the (causal) dependencies among the variables.
 - The notion of a causal nature of the dependencies is somewhat hard to grasp.
 - We will typically ignore the notion of causality here.
 - The structure of the network qualitatively describes the dependencies of the random variables.

Example: Wet Lawn

- Directed graphical model / Bayesian network:
 - Rain can cause both lawsns to be wet.
 - “Rain can cause both lawsns to be wet.”
 - “Holmes’ lawn may be wet due to his neighbor’s lawn may not.”

Directed Graphical Models

- Nodes or random variables
 - We usually know the range of the random variables.
 - The value of a variable may be known or unknown.
 - If they are known (observed), we usually shade the node:
 - unknown
 - known

- Examples of variable nodes
 - Binary events: Rain (yes / no), sprinkler (yes / no)
 - Discrete variables: Ball is red, green, blue, ...
 - Continuous variables: Age of a person, ...

Directed Graphical Models

- Most often, we are interested in quantitative statements
 - I.e. the probabilities (or densities) of the variables.
 - Example: What is the probability that it rained? ...
 - These probabilities change if we have:
 - more knowledge,
 - less knowledge, or
 - different knowledge
 about the other variables in the network.

Directed Graphical Models

- Simplest case:
 - $\alpha \rightarrow b$

 - This model encodes
 - The value of b depends on the value of α.
 - This dependency is expressed through the conditional probability:
 - $p(b|\alpha)$
 - Knowledge about α is expressed through the prior probability:
 - $p(\alpha)$
 - The whole graphical model describes the joint probability of α and b:
 - $p(\alpha, b) = p(b|\alpha)p(\alpha)$
Directed Graphical Models

- If we have such a representation, we can derive all other interesting probabilities from the joint.
 - E.g. marginalization
 \[
 p(a) = \sum_b p(a, b) = \sum_b p(b|a)p(a)
 \]
 \[
 p(b) = \sum_a p(a, b) = \sum_a p(a|b)p(a)
 \]
 - With the marginals, we can also compute other conditional probabilities:
 \[
 p(a|b) = \frac{p(a, b)}{p(b)}
 \]

Example

- Evaluating the Bayesian network...
 - We start with the simple product rule:
 \[
 p(a, b, c) = p(a|b, c)p(b|c)p(c)
 \]
 - This means that we can rewrite the joint probability of the variables as
 \[
 p(S, R, W) = p(C)p(S|C)p(R|C)p(W|S, R)
 \]
 - But the Bayesian network tells us that
 \[
 p(C, S, R, W) = p(C)p(S|C)p(R|C)p(W|S, R)
 \]
 - I.e. rain is independent of sprinkler (given the cloudyness).
 - Wet grass is independent of the cloudyness (given the state of the sprinkler and the rain).

Directed Graphical Models

- Chains of nodes:
 - As before, we can compute
 \[
 p(a, b) = p(b|a)p(a)
 \]
 - But we can also compute the joint distribution of all three variables:
 \[
 p(a, b, c) = p(c|a, b)p(a, b) = p(c|b)p(b)\]
 - We can read off from the graphical representation that variable \(c \) does not depend on \(a \), if \(b \) is known.
 - How? What does this mean?

Directed Graphical Models

- A general directed graphical model (Bayesian network) consists of
 - A set of variables: \(U = \{x_1, \ldots, x_n\} \)
 - A set of directed edges between the variable nodes.
 - The variables and the directed edges define an acyclic graph.
 - Acyclic means that there is no directed cycle in the graph.
 - For each variable \(x_i \) with parent nodes \(p_{i} \), in the graph, we require knowledge of a conditional probability:
 \[
 p(x_i|\{x_j|j \in p_{i}\})
 \]
Directed Graphical Models

- **Given**
 - Variables: \(U = \{x_1, \ldots, x_n\} \)
 - Directed acyclic graph: \(G = (V, E) \)
 - \(V \): nodes = variables, \(E \): directed edges

 We can express / compute the joint probability as
 \[
p(x_1, \ldots, x_n) = \prod_{i=1}^{n} p(x_i | \{x_j | j \in \text{pa}_i\})
 \]
 We can express the joint as a product of all the conditional distributions from the parent-child relations in the graph.
 We obtain a factorized representation of the joint.

Exercise: Computing the joint probability

\[
p(x_1, \ldots, x_7) = ?
\]
Directed Graphical Models

- Exercise: Computing the joint probability
 \[p(x_1, \ldots, x_n) = p(x_1)p(x_2|x_1)p(x_3|x_1, x_2, x_3) \]
 \[p(x_5|x_1, x_3)p(x_4|x_2)p(x_1|x_4, x_3) \]

General factorization
\[p(x) = \prod_{i=1}^{k} p(x_i|x_{pa_i}) \]

We can directly read off the factorization of the joint from the network structure!

Example: Classifier Learning

- Bayesian classifier learning
 - Given \(N \) training examples \(x = \{x_1, \ldots, x_N\} \) with target values \(t \)
 - We want to optimize the classifier \(y \) with parameters \(w \).
 - We can express the joint probability of \(t \) and \(w \):
 \[p(t, w) = p(t|w) \prod_{i=1}^{k} p(w_i|x_{pa_i}) \]
 - Corresponding Bayesian network:
 Short notation:
 \[\sim "Plate" \]
 (short notation for \(N \) copies)

Conditional Independence

- \(p(x_0, x_1, x_2, x_3) = p(x_3|x_0, x_1, x_2)p(x_2|x_0, x_1)p(x_1|x_0)p(x_0) \)

- Now, we can make a simplifying assumption
 - Only the previous word is what matters, i.e. given the previous word we can forget about every word before the previous one.
 - E.g. \(p(x_4|x_3, x_2, x_1) = p(x_4|x_3) \) or \(p(x_2|x_3, x_1) = p(x_2|x_3) \)
 - Such assumptions are called conditional independence assumptions.

\(\sim \) It’s the edges that are missing in the graph that are important! They encode the simplifying assumptions we make.

Factorized Representation

- Reduction of complexity
 - Joint probability of \(n \) binary variables requires us to represent values by brute force
 \[O(2^n) \] terms
 - The factorized form obtained from the graphical model only requires
 \[O(n \cdot 2^k) \] terms
 - \(k \): maximum number of parents of a node.

Conditional Independence

- Suppose we have a joint density with 4 variables.
 \[p(x_0, x_1, x_2, x_3) \]

- For example, 4 subsequent words in a sentence:
 \(x_0 = "Machine", \ x_1 = "learning", \ x_2 = "is", \ x_3 = "fun" \)

- The product rule tells us that we can rewrite the joint density:
 \[p(x_0, x_1, x_2, x_3) = p(x_0)p(x_1|x_0, x_2)p(x_2|x_0, x_1)p(x_3|x_0, x_1) \]

Conditional Independence

- The notion of conditional independence means that
 - Given a certain variable, other variables become independent.
 - More concretely here:
 \[p(x_3|x_0, x_1, x_2) = p(x_3|x_0) \]
 - This means that \(x_3 \) is conditionally independent from \(x_0 \) and \(x_1 \) given \(x_2 \).
 \[p(x_2|x_0, x_1) = p(x_2|x_1) \]
 - This means that \(x_2 \) is conditionally independent from \(x_0 \) given \(x_1 \).
 - Why is this?
 \[p(x_0, x_2|x_1) = p(x_0|x_2)p(x_2|x_1) = p(x_0)p(x_2|x_1) \]
Conditional Independence - Notation

- **X** is conditionally independent of **Y** given **V**

 Equivalence: \(X \perp Y | V \iff p(X, Y | V) = p(X | V)p(Y | V) \)

 Also:

 \(X \perp Y | V \iff p(X, Y | V) = p(X | V)p(Y | V) \)

 Special case: Marginal independence

 \(X \perp Y \iff X \perp Y | \emptyset \iff p(X, Y) = p(X)p(Y) \)

 Often, we are interested in conditional independence between sets of variables:

 \(X \perp Y | V \iff \{ X \perp Y, \forall X \in X \text{ and } \forall Y \in Y \} \)

Conditional Independence

- Directed graphical models are not only useful...

 - Because the joint probability is factorized into a product of simpler conditional distributions.

 - But also, because we can read off the conditional independence of variables.

- Let’s discuss this in more detail...

First Case: “Tail-to-tail”

- Divergent model

 - Are \(a \) and \(b \) independent?

 - Marginalize out \(c \):

 \[p(a, b) = \sum_c p(a, b, c) = \sum_c p(a|c)p(b|c)p(c) \]

 - In general, this is not equal to \(p(a)p(b) \).

 \(\Rightarrow \) The variables are not independent.

First Case: “Tail-to-tail”

- What about now?

 - Are \(a \) and \(b \) independent?

 - Marginalize out \(c \):

 \[p(a, b) = \sum_c p(a, b, c) = \sum_c p(a|c)p(b|c)p(c) = p(a)p(b) \]

 \(\Rightarrow \) If there is no undirected connection between two variables, then they are independent.

First Case: Divergent (“Tail-to-Tail”)

- Let’s return to the original graph, but now assume that we observe the value of \(c \):

 - The conditional probability is given by:

 \[p(a, b | c) = \frac{p(a, b, c)}{p(c)} = \frac{p(a|c)p(b|c)p(c)}{p(c)} = p(a|c)p(b|c) \]

 \(\Rightarrow \) If \(c \) becomes known, the variables \(a \) and \(b \) become conditionally independent.

Second Case: Chain (“Head-to-Tail”)

- Let us consider a slightly different graphical model:

 Chain graph

 - Are \(a \) and \(b \) independent? No!

 \[p(a, b) = \sum_c p(a, b, c) = \sum_c p(b|c)p(c|a)p(a) = p(b|a)p(a) \]

 - If \(c \) becomes known, are \(a \) and \(b \) conditionally independent? Yes!

 \[p(a, b | c) = \frac{p(a, b, c)}{p(c)} = \frac{p(a|c)p(b|c)p(c)}{p(c)} = p(a|c)p(b|c) \]
Third Case: Convergent ("Head-to-Head")

- Let’s look at a final case: Convergent graph

\[p(a, b) = \sum_c p(a, b, c) = \sum_c p(c|a, b)p(a) = p(a)p(b) \]

- This is very different from the previous cases.
- Even though \(a\) and \(b\) are connected, they are independent.

Summary: Conditional Independence

- Three cases
 - Divergent ("Tail-to-Tail")
 - Conditional independence when \(c\) is observed.
 - Chain ("Head-to-Tail")
 - Conditional independence when \(c\) is observed.
 - Convergent ("Head-to-Head")
 - Conditional independence when neither \(c\), nor any of its descendants are observed.

D-Separation

- Definition
 - Let \(A\), \(B\), and \(C\) be non-intersecting subsets of nodes in a directed graph.
 - A path from \(A\) to \(B\) is blocked if it contains a node such that either
 - The arrows on the path meet either head-to-tail or tail-to-tail at the node, and the node is in the set \(C\), or
 - The arrows meet head-to-head at the node, and neither the node, nor any of its descendants, are in the set \(C\).
 - If all paths from \(A\) to \(B\) are blocked, \(A\) is said to be d-separated from \(B\) by \(C\).

 \[A \perp B \mid C \]

 Read: “\(A\) is conditionally independent of \(B\) given \(C\)”.

Exercise: What is the relationship between \(a\) and \(b\)?

Explaining Away

- Let’s look at Holmes' example again:

 Observation "Holmes’ lawn is wet" increases the probability of both "Rain" and "Sprinkler".
Explaining Away

- Let’s look at Holmes’ example again:

- Observation "Holmes’ lawn is wet" increases the probability of both "Rain" and "Sprinkler".
- Also observing "Neighbor’s lawn is wet" decreases the probability for "Sprinkler".
- The "Sprinkler" is explained away.

Topics of This Lecture

- Graphical Models
 - Introduction
- Directed Graphical Models (Bayesian Networks)
 - Notation
 - Conditional probabilities
 - Computing the joint probability
 - Factorization
 - Conditional independence
 - Determination
 - Explaining away
- Outlook: Inference in Graphical Models
 - Efficiency considerations

Inference in Graphical Models

- We know
 \[p(A, B, C, D, E) = p(A)p(B)p(C|A, B)p(D|B, C)p(E|C, D) \]
- More efficient method for \(p(AC = c) \):
 \[p(A, C = c) = \sum_{B, D, E} p(A)p(B)p(C = c|A, B)p(D|B, C = c)p(E|C = c, D) \]

 - Rest stays the same:
 Total: 4+2+2 = 8 operations

 \[\text{Could'n't we have got this result easier?} \]

Inference in Graphical Models

- Computing \(p(AC = c) \)
 - We know
 \[p(A, B, C, D, E) = p(A)p(B)p(C|A, B)p(D|B, C)p(E|C, D) \]
 \[p(A)p(B)p(C = c)\]
 - Naïve approach:
 \[p(A, C = c) = \sum_{B, D, E} p(A, B, C = c, D, E) \] 16 operations
 \[p(C = c) = \sum_{A, B} p(A, C = c) \] 2 operations
 \[p(A|C = c) = \frac{p(A, C = c)}{p(C = c)} \] 2 operations

 Total: 16+2+2 = 20 operations

Inference in Graphical Models

- Consider the network structure
 - Using what we know about factorization and conditional independence...
 - Factorization properties:
 - There is no directed path from \(D \) or \(E \) to either \(A \) or \(C \).
 - We do not need to consider \(D \) and \(E \).
 - Conditional independence properties:
 - \(C \) opens the path from \(A \) to \(B \) ("head-to-head").
 - \(A \) is conditionally dependent on \(B \) given \(C \).
 - When querying for \(p(AC = c) \), we only need to take into account \(A, B, \) and \(C = c \):
 \[p(A, C = c) = \sum_{B} p(A)p(B)p(C = c|A, B) \]
Summary

- Graphical models
 - Marriage between probability theory and graph theory.
 - Give insights into the structure of a probabilistic model.
 - Direct dependencies between variables.
 - Conditional independence
 - Allow for efficient factorization of the joint.
 - Factorization can be read off directly from the graph.
 - Capability to explain away hypotheses by new evidence.

- Next week
 - Undirected graphical models (Markov Random Fields)
 - Efficient methods for performing exact inference.

References and Further Reading

- A thorough introduction to Graphical Models in general and Bayesian Networks in particular can be found in Chapter 8 of Bishop's book.

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006