Machine Learning - Lecture 14

Exact Inference & Learning Bayes Nets

29.06.2010

Bastian Leibe
RWTH Aachen
http://www.mmp.rwth-aachen.de/
leibe@umic.rwth-aachen.de
Course Outline

- **Fundamentals (2 weeks)**
 - Bayes Decision Theory
 - Probability Density Estimation

- **Discriminative Approaches (4 weeks)**
 - Lin. Discriminants, SVMs, Boosting

- **Generative Models (5 weeks)**
 - Bayesian Networks + Applications
 - Markov Random Fields + Applications
 - Exact Inference
 - Approximate Inference

- **Unifying Perspective (1 week)**
Topics of This Lecture

• **Recap: Exact inference**
 - Factor Graphs
 - Sum-Product Belief Propagation
 - Junction Tree algorithm

• **Max-Sum Algorithm for finding most probable value**
 - Key ideas & Derivation
 - Example

• **Algorithms for loopy graphs**
 - Junction Tree algorithm
 - Loopy Belief Propagation

• **Learning Bayesian Networks**
 - Learning with known structure, full observability
 - Learning with known structure, partial observability
 - Structure learning
Recap: Factor Graphs

- **Joint probability**
 - Can be expressed as *product of factors*: \(p(x) = \frac{1}{Z} \prod_s f_s(x_s) \)
 - Factor graphs make this explicit through separate factor nodes.

- **Converting a directed polytree**
 - Conversion to undirected tree creates loops due to moralization!
 - Conversion to a factor graph again results in a tree!
Recap: Sum-Product Algorithm

- **Objectives**
 - Efficient, exact inference algorithm for finding marginals.

- **Procedure:**
 - Pick an arbitrary node as root.
 - Compute and propagate messages from the leaf nodes to the root, storing received messages at every node.
 - Compute and propagate messages from the root to the leaf nodes, storing received messages at every node.
 - Compute the product of received messages at each node for which the marginal is required, and normalize if necessary.

\[
p(x) \propto \prod_{s \in \text{ne}(x)} \mu_{f_s \rightarrow x}(x)
\]

- **Computational effort**
 - Total number of messages = 2 \cdot number of graph edges.
Recap: Sum-Product Algorithm

- Two kinds of messages
 - Message from factor node to variable nodes:
 - **Sum** of factor contributions
 \[
 \mu_{f \rightarrow x}(x) \equiv \sum_{X_s} F_s(x, X_s)
 \]
 \[
 = \sum_{X_s} f_s(x_s) \prod_{m \in \text{ne}(f_s) \setminus x} \mu_{x_m \rightarrow f_s}(x_m)
 \]
 - Message from variable node to factor node:
 - **Product** of incoming messages
 \[
 \mu_{x_m \rightarrow f_s}(x_m) \equiv \prod_{l \in \text{ne}(x_m) \setminus f_s} \mu_{f_l \rightarrow x_m}(x_m)
 \]

⇒ Simple propagation scheme.
Recap: Sum-Product from Leaves to Root

Message definitions:

\[
\mu_{f_s \rightarrow x}(x) \equiv \sum_{x_s} f_s(x_s) \prod_{m \in \text{ne}(f_s) \setminus x} \mu_{x_m \rightarrow f_s}(x_m)
\]

\[
\mu_{x_m \rightarrow f_s}(x_m) \equiv \prod_{l \in \text{ne}(x_m) \setminus f_s} \mu_{f_l \rightarrow x_m}(x_m)
\]

\[
\mu_{x \rightarrow f}(x) = 1 \\
\mu_{f \rightarrow x}(x) = f(x)
\]

Image source: C. Bishop, 2006
Recap: Sum-Product from Root to Leaves

Message definitions:

$$\mu_{f_s \rightarrow x}(x) \equiv \sum_{X_s} f_s(x_s) \prod_{m \in \text{ne}(f_s) \setminus x} \mu_{x_m \rightarrow f_s}(x_m)$$

$$\mu_{x_m \rightarrow f_s}(x_m) \equiv \prod_{l \in \text{ne}(x_m) \setminus f_s} \mu_{f_l \rightarrow x_m}(x_m)$$

$$\mu_x \rightarrow f(x) = 1$$ \hspace{1cm} $$\mu_f \rightarrow x(x) = f(x)$$

Image source: C. Bishop, 2006
Topics of This Lecture

- Recap: Exact inference
 - Factor Graphs
 - Sum-Product Belief Propagation
 - Junction Tree algorithm

- Max-Sum Algorithm for finding most probable value
 - Key ideas & Derivation
 - Example

- Algorithms for loopy graphs
 - Junction Tree algorithm
 - Loopy Belief Propagation

- Learning Bayesian Networks
 - Learning with known structure, full observability
 - Learning with known structure, partial observability
 - Structure learning
Max-Sum Algorithm

- **Objective:** an efficient algorithm for finding
 - Value x^{max} that maximises $p(x)$;
 - Value of $p(x^{\text{max}})$.
 ⇒ Application of dynamic programming in graphical models.

- **In general, maximum marginals ≠ joint maximum.**
 - Example:

	$x = 0$	$x = 1$
$y = 0$	0.3	0.4
$y = 1$	0.3	0.0

 $$\arg\max_x p(x, y) = 1 \quad \arg\max_x p(x) = 0$$
Max-Sum Algorithm - Key Ideas

• Key idea 1: Distributive Law (again)

\[\max(ab, ac) = a \max(b, c) \]
\[\max(a + b, a + c) = a + \max(b, c) \]

⇒ Exchange products/summations and max operations exploiting the tree structure of the factor graph.

• Key idea 2: Max-Product → Max-Sum

➢ We are interested in the maximum value of the joint distribution

\[p(x^{\text{max}}) = \max_x p(x) \]

⇒ Maximize the product \(p(x) \).

➢ For numerical reasons, use the logarithm.

\[\ln \left(\max_x p(x) \right) = \max_x \ln p(x). \]

⇒ Maximize the sum (of log-probabilities).
Max-Sum Algorithm

- Maximizing over a chain (max-product)

\[
 p(x^{\text{max}}) = \max_x p(x) = \max_{x_1} \cdots \max_{x_M} p(x)
\]

\[
 = \frac{1}{Z} \max_{x_1} \cdots \max_{x_N} \left[\psi_{1,2}(x_1, x_2) \cdots \psi_{N-1,N}(x_{N-1}, x_N) \right]
\]

\[
 = \frac{1}{Z} \max_{x_1} \left[\max_{x_2} \left[\psi_{1,2}(x_1, x_2) \left[\cdots \max_{x_N} \psi_{N-1,N}(x_{N-1}, x_N) \right] \cdots \right] \right]
\]

- Exchange max and product operators

- Generalizes to tree-structured factor graph

\[
 \max p(x) = \max_{x_n} \prod_{f_s \in \text{ne}(x_n)} \max_{X_s} f_s(x_n, X_s)
\]

Slide adapted from Chris Bishop

Image source: C. Bishop, 2006
Max-Sum Algorithm

- Initialization (leaf nodes)
 \[
 \mu_{x \to f}(x) = 0 \quad \mu_{f \to x}(x) = \ln f(x)
 \]

- Recursion
 - **Messages**
 \[
 \mu_{f \to x}(x) = \max_{x_1, \ldots, x_M} \left[\ln f(x, x_1, \ldots, x_M) + \sum_{m \in \text{ne}(f_x) \setminus x} \mu_{x_m \to f}(x_m) \right]
 \]
 \[
 \mu_{x \to f}(x) = \sum_{l \in \text{ne}(x) \setminus f} \mu_{f_l \to x}(x)
 \]
 - For each node, keep a record of which values of the variables gave rise to the maximum state:
 \[
 \phi(x) = \arg \max_{x_1, \ldots, x_M} \left[\ln f(x, x_1, \ldots, x_M) + \sum_{m \in \text{ne}(f_x) \setminus x} \mu_{x_m \to f}(x_m) \right]
 \]

Slide adapted from Chris Bishop
Max-Sum Algorithm

- Termination (root node)
 - Score of maximal configuration
 \[p_{\text{max}} = \max_x \left[\sum_{s \in \text{ne}(x)} \mu_{f_s \rightarrow x}(x) \right] \]
 - Value of root node variable giving rise to that maximum
 \[x_{\text{max}} = \arg \max_x \left[\sum_{s \in \text{ne}(x)} \mu_{f_s \rightarrow x}(x) \right] \]
 - Back-track to get the remaining variable values
 \[x_{n-1}^{\text{max}} = \phi(x_n^{\text{max}}) \]
Visualization of the Back-Tracking Procedure

• Example: Markov chain

⇒⇒⇒⇒

Same idea as in Viterbi algorithm for HMMs...

Image source: C. Bishop, 2006
Topics of This Lecture

- Recap: Exact inference
 - Factor Graphs
 - Sum-Product Belief Propagation
 - Junction Tree algorithm
- Max-Sum Algorithm for finding most probable value
 - Key ideas & Derivation
 - Example
- Algorithms for loopy graphs
 - Junction Tree algorithm
 - Loopy Belief Propagation
- Learning Bayesian Networks
 - Learning with known structure, full observability
 - Learning with known structure, partial observability
 - Structure learning
Junction Tree Algorithm

• Motivation
 - **Exact** inference on general graphs.
 - Works by turning the initial graph into a junction tree and then running a sum-product-like algorithm.
 - **Intractable** on graphs with large cliques.

• Main steps
 1. If starting from directed graph, first convert it to an undirected graph by **moralization**.
 2. Introduce additional links by **triangulation** in order to reduce the size of cycles.
 3. **Find cliques** of the moralized, triangulated graph.
 4. Construct a new graph from the **maximal cliques**.
 5. Remove minimal links to **break cycles** and get a junction tree.

⇒ Apply regular **message passing** to perform inference.
Junction Tree Algorithm

- Starting from an undirected graph...
Junction Tree Algorithm

1. Convert to an undirected graph through moralization.
 - Marry the parents of each node.
 - Remove edge directions.
2. Triangulate

- Such that there is no loop of length > 3 without a chord.
- This is necessary so that the final junction tree satisfies the “running intersection” property (explained later).
3. Find cliques of the moralized, triangulated graph.
4. Construct a new junction graph from maximal cliques.
 - Create a node from each clique.
 - Each link carries a list of all variables in the intersection.
 - Drawn in a “separator” box.
5. Remove links to break cycles ⇒ junction tree.
 - For each cycle, remove the link(s) with the minimal number of shared nodes until all cycles are broken.
 - Result is a maximal spanning tree, the junction tree.
• **Running intersection property**

 - *“If a variable appears in more than one clique, it also appears in all intermediate cliques in the tree”*.
 - This ensures that neighboring cliques have consistent probability distributions.
 - Local consistency → global consistency
Junction Tree: Example 1

- Algorithm
 1. Moralization
 2. Triangulation (not necessary here)
Junction Tree: Example 1

(b) Moral graph

(c) Junction graph

- Algorithm
 1. Moralization
 2. Triangulation (not necessary here)
 3. Find cliques
 4. Construct junction graph

Image source: J. Pearl, 1988
Junction Tree: Example 1

- **Algorithm**
 1. Moralization
 2. Triangulation (not necessary here)
 3. Find cliques
 4. Construct junction graph
 5. Break links to get junction tree

B. Leibe

Image source: J. Pearl, 1988
• Without triangulation step
 - The final graph will contain cycles that we cannot break without losing the running intersection property!

Image source: J. Pearl, 1988
Junction Tree: Example 2

- When applying the triangulation
 - Only small cycles remain that are easy to break.
 - Running intersection property is maintained.
Junction Tree Algorithm

- **Good news**
 - The junction tree algorithm is efficient in the sense that for a given graph there does not exist a computationally cheaper approach.

- **Bad news**
 - This may still be too costly.
 - Effort determined by number of variables in the largest clique.
 - Grows exponentially with this number (for discrete variables).
 \[\Rightarrow\] Algorithm becomes impractical if the graph contains large cliques!
Loopy Belief Propagation

- Alternative algorithm for loopy graphs
 - Sum-Product on general graphs.
 - Strategy: *simply ignore the problem.*
 - Initial unit messages passed across all links, after which messages are passed around until convergence
 - Convergence is not guaranteed!
 - Typically break off after fixed number of iterations.
 - *Approximate* but *tractable* for large graphs.
 - Sometime works well, sometimes not at all.
Topics of This Lecture

- Recap: Exact inference
 - Factor Graphs
 - Sum-Product Belief Propagation
 - Junction Tree algorithm
- Max-Sum Algorithm for finding most probable value
 - Key ideas & Derivation
 - Example
- Algorithms for loopy graphs
 - Junction Tree algorithm
 - Loopy Belief Propagation

- Learning Bayesian Networks
 - Learning with known structure, full observability
 - Learning with known structure, partial observability
 - Structure learning
Bayesian Networks

• What we’ve learned so far...
 ➢ We know they are directed graphical models.
 ➢ Their joint probability factorizes into conditional probabilities,

\[p(x) = \prod_{k=1}^{K} p(x_k | pa_k) \]

 ➢ We know how to convert them into undirected graphs.
 ➢ We know how to perform inference for them.
 - Sum/Max-Product BP for exact inference in (poly)tree-shaped BNs.
 - Loopy BP for approximate inference in arbitrary BNs.
 - Junction Tree algorithm for converting arbitrary BNs into trees.

• But what are they actually good for?
 ➢ How do we apply them in practice?
 ➢ And how do we learn their parameters?
Parameter Learning in Bayesian Networks

- We need to specify two things:
 - **Structure** of Bayesian network (graph topology)
 - Parameters of each *conditional probability table* (CPT)

- It is possible to learn both from training data.
 - But learning structure is much harder than learning parameters.
 - Also, learning when some nodes are hidden is much harder than when everything is observable.

- Four cases:

<table>
<thead>
<tr>
<th>Structure</th>
<th>Observability</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Known</td>
<td>Full</td>
<td>Maximum Likelihood Estimation</td>
</tr>
<tr>
<td>Known</td>
<td>Partial</td>
<td>EM (or gradient ascent)</td>
</tr>
<tr>
<td>Unknown</td>
<td>Full</td>
<td>Search through model space</td>
</tr>
<tr>
<td>Unknown</td>
<td>Partial</td>
<td>EM + search through model space</td>
</tr>
</tbody>
</table>
Learning Parameters

• Example:

\[p(x) = p(x_1)p(x_2|x_1)p(x_3|x_1)p(x_4|x_2) \]

- Assume each variable \(x_i \) is discrete and can take \(K_i \) values.
- The parameters of this model can be represented with 4 tables (called conditional probability tables - CPT):
 - \(p(x_1 = k) = \theta_{1,k} \) \(\theta_1 \) has \(K_1 \) entries.
 - \(p(x_2 = k' | x_1 = k) = \theta_{2,k,k'} \) \(\theta_2 \) has \(K_1 \times K_2 \) entries.
 - \(p(x_3 = k' | x_1 = k) = \theta_{3,k,k'} \)
 - \(p(x_4 = k' | x_2 = k) = \theta_{4,k,k'} \)

- Note that \(\sum_{k'} \theta_{i,k,k'} = 1 \)
Case 1: Known Structure, Full Observability

- Assume a training data set: \(D = \{ x^{(n)} \}_{n=1}^{N} \)
 - How do we learn \(\theta \) from \(D \)?

- Maximum Likelihood:
 \[
p(x^{(n)}|\theta) = p(x_1^{(n)}|\theta_1)p(x_2^{(n)}|x_1^{(n)}, \theta_2)p(x_3^{(n)}|x_1^{(n)}, \theta_3)p(x_4^{(n)}|x_2^{(n)}, \theta_4)
 \]
 \[
p(D|\theta) = \prod_{n=1}^{N} p(x^{(n)}|\theta) = \prod_{n=1}^{N} \prod_{i=1}^{4} p(x_i^{(n)}|x_{pa(i)}^{(n)}, \theta_i)
 \]

- Maximum Log-Likelihood:
 \[
 \ln p(D|\theta) = \sum_{n=1}^{N} \sum_{i=1}^{4} \ln p(x_i^{(n)}|x_{pa(i)}^{(n)}, \theta_i)
 \]

Slide credit: Zoubin Ghahramani
Case 1: Known Structure, Full Observability

- **Maximum Log-Likelihood:**

 \[
 \ln p(D|\theta) = \sum_{n=1}^{N} \sum_{i=1}^{4} \ln p(x^{(n)}_{i}|x^{(n)}_{pa(i)}, \theta_{i})
 \]

 - This decomposes into a sum of functions \(\theta_{i} \).
 - Each \(\theta_{i} \) can be optimized separately:

 \[
 \theta_{i,k,k'} = \frac{n_{i,k,k'}}{\sum_{k''} n_{i,k,k''}}
 \]

 where \(n_{i,k,k'} \) is the number of times in \(D \) that \(x_{i} = k' \) and \(x_{pa(i)} = k \).

- **ML solution**

 \[\Rightarrow\text{Simply calculate frequencies!}\]

<table>
<thead>
<tr>
<th>(x_{1})</th>
<th>(x_{2})</th>
<th>(n_{2})</th>
<th>(\theta_{2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0.4</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>6</td>
<td>0.3</td>
</tr>
</tbody>
</table>

 \[\Rightarrow x_{1} \]

<table>
<thead>
<tr>
<th>(x_{2})</th>
<th>0.6</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_{1})</td>
<td>0.3</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Slide credit: Zoubin Ghahramani

B. Leibe
Case 2: Known Structure, Hidden Variables

- **ML learning with hidden variables**
 - Assume a model parameterized by θ with observed variables X and hidden (latent) variables Z.

- **Goal**
 - **Maximize parameter log-likelihood given the observed data**
 \[
 L(\theta) = \ln p(X|\theta) = \ln \sum_Z p(X, Z|\theta)
 \]

- **EM Algorithm**: Iterate between two steps:
 - **E-step**: fill-in hidden / missing variables
 - **M-step**: apply complete-data learning to filled-in data.
Learning with Hidden Variables: EM Algorithm

- **Goal:**
 - Maximize parameter log-likelihood given the observed data.

 \[L(\theta) = \ln p(X|\theta) = \ln \sum_{Z} p(X, Z|\theta) \]

- **EM Algorithm: Derivation**
 - We do not know the values of the latent variables in \(Z \), but we can express their posterior distribution given \(X \) and (an initial guess for) \(\theta \).

 \[\Rightarrow \textbf{E-step: Evaluate } p(Z|X, \theta^{\text{old}}) \]

 - Since we cannot use the complete-data log-likelihood directly, we maximize its expected value under the posterior distribution of \(Z \).

 \[\Rightarrow \textbf{M-step: Maximize } \theta^{\text{new}} = \arg \max_{\theta} \sum_{Z} p(Z|X, \theta^{\text{old}}) \ln p(X, Z|\theta) \]
Learning with Hidden Variables: EM Algorithm

- **Note on the E-step:**
 - The E-step requires solving the **inference** problem.
 - I.e. finding the distribution over the hidden variables $p(Z|X, \theta^{old})$ given the current model parameters.
 - This can be done using **belief propagation** or the **junction tree** algorithm.

 ⇒ As inference becomes a subroutine of the learning procedure, fast inference algorithms are crucial!
Example Application

- **Mixture-of-Gaussian Fitting with EM**
 - Standard application of EM.
 - Corresponding Bayesian network:

- **Important point here**
 - Bayesian networks can be treacherous!
 - They hide the true complexity in a very simple-looking diagram.
 - E.g. the diagram here only encodes the information that we have a latent variable θ which depends on observed variables x_i
 - The information that $p(x_i | \theta)$ is represented by a mixture-of-Gaussians needs to be communicated additionally!
 - On the other hand, this general framework can also be used to apply EM for other types of distributions or latent variables.
Summary: Learning with Known Structure

- **ML-Learning with complete data (no hidden variables)**
 - Log-likelihood decomposes into sum of functions of θ_i.
 - Each θ_i can be optimized separately.
 - ML-solution: simply calculate frequencies.

- **ML-Learning with incomplete data (hidden variables)**
 - Iterative EM algorithm.
 - E-step: compute expected counts given previous settings $\theta^{(t)}$ of parameters $E[n_{i,j,k} \mid D, \theta^{(t)}]$.
 - M-step: re-estimate parameters θ using the expected counts.
 \[
 \theta^{(t+1)}_{i,j,k} \leftarrow \frac{E[n_{i,j,k} \mid D, \theta^{(t)}]}{\sum_{k'} E[n_{i,j,k'} \mid D, \theta^{(t)}]}
 \]
Cases 3+4: Unknown Structure

- **Goal**
 - Learn a directed acyclic graph (DAG) that best explains the data.

- **Constraints-based learning**
 - Use statistical tests of marginal and conditional independence.
 - Find the set of DAGs whose d-separation relations match the results of conditional independence tests.

- **Score-based learning**
 - Use a global score such as BIC (Bayes Information Criterion).
 - Find a structure that maximizes this score.
Cases 3+4: Unknown Structure

- Extremely hard problem
 - NP-hard
 - Number of DAGs on N variables is super-exponential in N.
 - 4 nodes: 543 DAGs
 - 10 nodes: $O(10^{18})$ DAGs.
 \Rightarrow Need to use heuristics to prune down the search space and use efficient methods to evaluate hypotheses.

- Additional problem: often not enough data available.
 - Need to make decisions about statistical conditional independence.
 - Typically only feasible if the structure is relatively simple and a lot of data is available...
Example Application

- Analyzing gene expression from micro-array data
 - 1000s of measurement spots (probes) on micro-array, each sensitive to a specific DNA marker (e.g., a section of a gene).
 - The probes measure if the corresponding gene is expressed (=active).
 - Collect samples from patients with a certain disease or condition.
 - Monitor 1000s of genes simultaneously.

- Interesting questions
 - Is there a statistical relationship between certain gene expressions?
 - If so, can we derive the structure by which they influence each other?
References and Further Reading

- A thorough introduction to Graphical Models in general and Bayesian Networks in particular can be found in Chapter 8 of Bishop’s book.

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006