Recap: How to Set the Potentials?

- Unary potentials
 - E.g. color model, modeled with a Mixture of Gaussians
 \[\phi(x_i, y_k; \theta) = \log \sum_k \theta_k p(k|x_i) N(y_k; \bar{y}_k, \Sigma_k) \]
 - Learn color distributions for each label

- Pairwise potentials
 - Potts Model
 \[\psi(x_i, x_j; \theta) = \theta \delta(x_i \neq x_j) \]
 - Simplest discontinuity preserving model.
 - Discontinuities between any pair of labels are penalized equally.
 - Useful when labels are unordered or number of labels is small.
 - Extension: “contrast sensitive Potts model”
 \[\psi(x_i, x_j; y_j; \theta) = \theta \beta \delta(x_i \neq x_j) \]
 - Discourages label changes except in places where there is also a large change in the observations.

Recap: MRF Structure for Images

- Basic structure
 - Bayesian Networks + Applications
 - Markov Random Fields + Applications
 - Exact Inference
 - Approximate Inference

- Two components
 - Observation model
 - Neighborhood relations
 - Serve as smoothing terms.
 - Discourage neighboring pixels to have different labels.
 - This can either be learned or be set to fixed “penalties”.

Course Outline

- Fundamentals (2 weeks)
 - Bayes Decision Theory
 - Probability Density Estimation
- Discriminative Approaches (4 weeks)
 - Lin. Discriminants, SVMs, Boosting
- Generative Models (5 weeks)
 - Bayesian Networks + Applications
 - Markov Random Fields + Applications
 - Exact Inference
 - Approximate Inference
- Unifying Perspective (1 week)

Announcements

- Exercise 5 is available
 - Junction tree algorithm
 - st-mincut
 - Graph cuts
 - Sampling
 - MCMC

Recap: How to Set the Potentials?

- Unary potentials
 - E.g. color model, modeled with a Mixture of Gaussians
 \[\phi(x_i, y_k; \theta) = \log \sum_k \theta_k p(k|x_i) N(y_k; \bar{y}_k, \Sigma_k) \]
 - Learn color distributions for each label

- Pairwise potentials
 - Potts Model
 \[\psi(x_i, x_j; \theta) = \theta \delta(x_i \neq x_j) \]
 - Simplest discontinuity preserving model.
 - Discontinuities between any pair of labels are penalized equally.
 - Useful when labels are unordered or number of labels is small.
 - Extension: “contrast sensitive Potts model”
 \[\psi(x_i, x_j; y_j; \theta) = \theta \beta \delta(x_i \neq x_j) \]
 - Discourages label changes except in places where there is also a large change in the observations.
Recap: Graph Cuts for Binary Problems

Recap: When Can s-t Graph Cuts Be Applied?

Converting an MRF into an s-t Graph

Recap: Simple Binary Image Denoising Model

Recap: s-t-Mincut Equivalent to Maxflow
Dealing with Non-Binary Cases

- Limitation to binary energies is often a nuisance. ⇒ E.g. binary segmentation only.
- We would like to solve also multi-label problems. ⇒ The bad news: Problem is NP-hard with 3 or more labels!
- There exist some approximation algorithms which extend graph cuts to the multi-label case:
 - \(\alpha\)-Expansion
 - \(\alpha\beta\)-Swap
- They are no longer guaranteed to return the globally optimal result.
 - But \(\alpha\)-Expansion has a guaranteed approximation quality (2-approx) and converges in a few iterations.

\(\alpha\)-Expansion Move

- Basic idea:
 - Break multi-way cut computation into a sequence of binary s-t cuts.

\(\alpha\)-Expansion Algorithm

1. Start with any initial solution
2. For each label "\(\alpha\)" in any (e.g. random) order:
 1. Compute optimal \(\alpha\)-expansion move (s-t graph cuts).
 2. Decline the move if there is no energy decrease.
3. Stop when no expansion move would decrease energy.

\(\alpha\)-Expansion Moves

- In each \(\alpha\)-expansion a given label "\(\alpha\)" grabs space from other labels

Example: Stereo Vision

GraphCut Applications: “GrabCut”

- Interactive Image Segmentation [Boykov & Jolly, ICCV’01]
 - Rough region cues sufficient
 - Segmentation boundary can be extracted from edges
- Procedure
 - User marks foreground and background regions with a brush.
 - This is used to create an initial segmentation which can then be corrected by additional brush strokes.
Approximate Inference

- Exact Bayesian inference is often intractable.
 - Often infeasible to evaluate the posterior distribution or to compute expectations w.r.t. the distribution.
 - E.g. because the dimensionality of the latent space is too high.
 - Or because the posterior distribution has a too complex form.
 - Problems with continuous variables
 - Required integrations may not have closed-form solutions.
 - Problems with discrete variables
 - Marginalization involves summing over all possible configurations of the hidden variables.
 - There may be exponentially many such states.

⇒ We need to resort to approximation schemes.
Topics of This Lecture

- **Approximate Inference**
 - Variational methods
 - Sampling approximations

- **Sampling approaches**
 - Sampling from a distribution
 - Ancestral Sampling
 - Rejection Sampling
 - Importance Sampling

- **Markov Chain Monte Carlo**
 - Metropolis Chains
 - Metropolis-Hastings Algorithm
 - Gibbs Sampling

Sampling Idea

- **Objective:** Evaluate expectation of a function $f(z)$ w.r.t. a probability distribution $p(z)$.

\[\mathbb{E}[f] = \int f(z)p(z)dz \]

- **Sampling idea**
 - Draw L independent samples z_l with $l = 1, \ldots, L$ from $p(z)$.
 - This allows the expectation to be approximated by a finite sum

\[\mathbb{E}[f] \approx \frac{1}{L} \sum_{l=1}^{L} f(z_l) \]

- As long as the samples z_l are drawn independently from $p(z)$, then
\[\mathbb{E}[f] = \mathbb{E}[f] \]

\[\Rightarrow \text{Unbiased estimate, independent of the dimension of } z! \]

Sampling - Challenges

- **Problem 1:** Samples might not be independent
 \[\Rightarrow \text{Effective sample size might be much smaller than apparent sample size.} \]

- **Problem 2:**
 - If $f(z)$ is small in regions where $p(z)$ is large and vice versa, the expectation may be dominated by regions of small probability.
 \[\Rightarrow \text{Large sample sizes necessary to achieve sufficient accuracy.} \]

Sampling from a Gaussian

- **Given:** 1-dim. Gaussian pdf (probability density function) $p(x|\mu, \sigma^2)$ and the corresponding cumulative distribution:

\[F_{\mu,\sigma^2}(x) = \int_{-\infty}^{x} p(x|\mu, \sigma^2)dx \]

- To draw samples from a Gaussian, we can invert the cumulative distribution function:

\[u \sim \text{Uniform}(0, 1) \Rightarrow F_{\mu,\sigma^2}^{-1}(u) \sim p(x|\mu, \sigma^2) \]

Parametric Density Model

- **Example:**
 - A simple multivariate (d-dimensional) Gaussian model

\[p(x|\mu, \Sigma) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp \left\{ -\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right\} \]

\[\Rightarrow \text{This is a "generative" model in the sense that we can generate samples } x \text{ according to the distribution.} \]

Sampling from a pdf (Transformation method)

- **In general,** assume we are given the pdf $p(x)$ and the corresponding cumulative distribution:

\[F(x) = \int_{-\infty}^{x} p(z)dz \]

- To draw samples from this pdf, we can invert the cumulative distribution function:

\[u \sim \text{Uniform}(0, 1) \Rightarrow F^{-1}(u) \sim p(x) \]
Ancestral Sampling

- Generalization of this idea to directed graphical models.
 - Joint probability factorizes into conditional probabilities:
 \[p(x) = \prod_k p(x_k | p_{\text{pa}k}) \]
 - Ancestral sampling
 - Assume the variables are ordered such that there are no links from any node to a lower-numbered node.
 - Start with lowest-numbered node and draw a sample from its distribution.
 - Cycle through each of the nodes in order and draw samples from the conditional distribution (where the parent variable is set to its sampled value).
 \[\hat{x}_n \sim p(x_n | p_{\text{pa}_n}) \]

Discussion

- Transformation method
 - Limited applicability, as we need to invert the indefinite integral of the required distribution \(p(x) \).
- More general
 - Rejection Sampling
 - Importance Sampling

Rejection Sampling

- Assumptions
 - Sampling directly from \(p(x) \) is difficult.
 - But we can easily evaluate \(p(x) \) up to some normalization factor \(Z_p \):
 \[p(x) = \frac{1}{Z_p} \tilde{p}(x) \]
- Idea
 - We need some simpler distribution \(q(z) \) (called proposal distribution) from which we can draw samples.
 - Choose a constant \(k \) such that: \(\forall z : kq(z) \geq \tilde{p}(z) \)

Rejection Sampling - Discussion

- Limitation: high-dimensional spaces
 - For rejection sampling to be of practical value, we require that \(kq(z) \) be close to the required distribution, so that the rate of rejection is minimal.
- Artificial example
 - Assume that \(p(x) \) is Gaussian with covariance matrix \(\sigma_x^2 I \)
 - Assume that \(q(z) \) is Gaussian with covariance matrix \(\sigma_z^2 I \)
 - Obviously: \(\sigma_z^2 \geq \sigma_x^2 \)
 - In \(D \) dimensions: \(k = (\sigma_z / \sigma_x)^D \)
 - Assume \(\sigma_z \) is just 1% larger than \(\sigma_x \)
 - \(D = 1000 \Rightarrow k = 1.01^{1000} \gg 20,000 \)
 - And \(p(\text{accept}) \leq \frac{1}{20000} \)
 - Often impractical to find good proposal distributions for high dimensions!

Importance Sampling

- Approach
 - Approximate expectations directly (but does not enable to draw samples from \(p(x) \) directly).
 - Goal: \[\mathbb{E}[f] = \int f(x)p(x)dx \]
- Simplistic strategy: Grid sampling
 - Discretize \(x \)-space into a uniform grid.
 - Evaluate the integrand as a sum of the form
 \[\mathbb{E}[f] \approx \sum_{i=1}^{N} f(x^{(i)})p(x^{(i)})dx \]
 - But: number of terms grows exponentially with number of dimensions!
Importance Sampling

- Idea
 - Use a proposal distribution \(q(z) \) from which it is easy to draw samples.
 - Express expectations in the form of a finite sum over samples \(\{z^{(i)}\} \) drawn from \(q(z) \).

 \[
 \mathbb{E}[f] = \int f(x)p(x)dx = \int f(x) \frac{p(x)}{q(x)} q(x)dx \approx \frac{1}{L} \sum_{i=1}^{L} p(z^{(i)}) f(z^{(i)})
 \]
 - with importance weights

 \[
 r_i = \frac{p(z^{(i)})}{q(z^{(i)})}
 \]

 - Ratio of normalization constants can be evaluated

 \[
 \frac{Z_p}{Z_q} = \frac{1}{Z_q} \int p(x)dx = \frac{\int p(x^{(i)}) q(x^{(i)})/q(z^{(i)}) dx}{\int q(x^{(i)}) dx} \approx \frac{1}{L} \sum_{i=1}^{L} r_i
 \]
 - and therefore

 \[
 \mathbb{E}[f] \approx \frac{L}{\sum_{i=1}^{L} r_i} \sum_{i=1}^{L} r_i f(z^{(i)})
 \]
 - with

 \[
 w_i = \frac{r_i}{\sum_{i=1}^{L} r_i} = \frac{p(z^{(i)}) q(z^{(i))}}{\sum_{i=1}^{L} p(z^{(i)}) q(z^{(i))}}
 \]

Importance Sampling - Discussion

- Observations
 - Success of importance sampling depends crucially on how well the sampling distribution \(q(z) \) matches the desired distribution \(p(z) \).
 - Often, \(p(z)/f(z) \) is strongly varying and has a significant proportion of its mass concentrated over small regions of \(z \)-space.
 - Weights \(r_i \) may be dominated by a few weights having large values.
 - Practical issue: if none of the samples falls in the regions where \(p(z)/f(z) \) is large.
 - The results may be arbitrary in error.
 - And there will be no diagnostic indication (no large variance in \(r \))!
 - Key requirement for sampling distribution \(q(z) \):
 - Should not be small or zero in regions where \(p(z) \) is significant!

Topics of This Lecture

- Approximate Inference
 - Variational methods
 - Sampling approaches
- Sampling approaches
 - Sampling from a distribution
 - Metropolis Algorithm
 - Metropolis-Hastings Algorithm
 - Gibbs Sampling
- Markov Chain Monte Carlo
 - Markov Chains
 - Metropolis Algorithm
 - Metropolis-Hastings Algorithm
 - Gibbs Sampling

Independent Sampling vs. Markov Chains

- So far
 - We’ve considered two methods, Rejection Sampling and Importance Sampling, which were both based on independent samples from \(q(z) \).
 - However, for many problems of practical interest, it is difficult or impossible to find \(q(z) \) with the necessary properties.
- Different approach
 - We abandon the idea of independent sampling.
 - Instead, rely on a Markov Chain to generate dependent samples from the target distribution.
 - Independence would be a nice thing, but it is not necessary for the Monte Carlo estimate to be valid.
Markov Chains – Properties

- **Sufficient (but not necessary) condition to ensure that a Markov chain \(\sum_{m=1}^{\infty} z_m^\tau \) tends to \(p(z) \) as \(\tau \to \infty \):**
 - The new candidate sample \(z_{\tau+1} \) is accepted with probability
 \[A(z_{\tau}^\tau, z_{\tau+1}^{\tau+1}) = \min \left(1, \frac{p(z_{\tau+1}^{\tau+1})}{p(z_{\tau}^\tau)} \right) \]

- **Implementation:**
 - Choose random number \(u \) uniformly from unit interval \((0,1)\).
 - Accept sample if \(A(z_{\tau}^\tau, z_{\tau+1}^{\tau+1}) > u \).

- **Note:**
 - New candidate samples always accepted if \(p(z_{\tau}^\tau) \geq p(z_{\tau+1}^{\tau+1}) \).
 - I.e. when new sample has higher probability than the previous one.
 - The algorithm sometimes accepts a state with lower probability.

- **Property:**
 - When \(q(x_{\tau+1}|x_\tau) \geq 0 \) for all \(x \), the distribution of \(x_\tau \) tends to \(p(x) \) as \(\tau \to \infty \).

- **Example: Sampling from a Gaussian**
 - Proposal: Gaussian with \(\sigma = 0.2 \).
 - **Green:** accepted samples
 - **Red:** rejected samples

Markov Chains - Properties

- **Invariant distribution**
 - A distribution is said to be invariant (or stationary) w.r.t. a Markov chain if each step in the chain leaves that distribution invariant.
 - Transition probabilities:
 \[T(x_{\tau}^\tau, x_{\tau+1}^{\tau+1}) = p(x_{\tau+1}^{\tau+1}|x_{\tau}^\tau) \]
 - Distribution \(p(x) \) is invariant if:
 \[p(x) = \sum_{x'} T(x', x) p(x') \]

- **Detailed balance**
 - Sufficient (but not necessary) condition to ensure that a distribution is invariant:
 \[p'(x) T'(x', x) = p'(x') T'(x', x) \]
 - A Markov chain which respects detailed balance is reversible.
Gibbs Sampling

- **Example**
- Assume distribution \(p(z_1, z_2, z_3) \).
- Replace \(z_1^{(t)} \) with new value drawn from \(z_1^{(t+1)} \sim p(z_1 | z_2^{(t)}, z_3^{(t)}) \)
- Replace \(z_2^{(t)} \) with new value drawn from \(z_2^{(t+1)} \sim p(z_2 | z_1^{(t)} , z_3^{(t)}) \)
- Replace \(z_3^{(t)} \) with new value drawn from \(z_3^{(t+1)} \sim p(z_3 | z_1^{(t)}, z_2^{(t+1)}) \)
- And so on...

MCMC - Metropolis-Hastings Algorithm

- **Properties**
 - We can show that \(p(z) \) is an invariant distribution of the Markov chain defined by the Metropolis-Hastings algorithm.
 - We show detailed balance:
 \[
 p(z) q(z', z) \mathbb{A}(z', z) = \min \left(\frac{p(z') q(z, z')}{p(z) q(z', z)} \mathbb{A}(z, z') \right)
 \]
 - If you can compute (and sample from) the conditionals, you can apply Gibbs sampling.
 - The algorithm is completely parameter free.
 - Can also be applied to subsets of variables.

- **Approach**
 - MCMC-algorithm that is simple and widely applicable.
 - May be seen as a special case of Metropolis-Hastings.

- **Idea**
 - Sample variable-wise: replace \(z_i \) by a value drawn from the distribution \(p(z_i | z_{\neq i}) \).
 - This means we update one coordinate at a time.
 - Repeat procedure either by cycling through all variables or by choosing the next variable.

- **Note**
 - When the proposal distributions are symmetric, Metropolis-Hastings reduces to the standard Metropolis algorithm.
Gibbs Sampling

- Example
 - 20 iterations of Gibbs sampling on a bivariate Gaussian.
 - Note: strong correlations can slow down Gibbs sampling.

Summary: Approximate Inference

- Exact Bayesian inference often intractable.
- Rejection and Importance Sampling
 - Generate independent samples.
 - Impractical in high-dimensional state spaces.
- Markov Chain Monte Carlo (MCMC)
 - Simple & effective (even though typically computationally expensive).
 - Scales well with the dimensionality of the state space.
 - Issues of convergence have to be considered carefully.
- Gibbs Sampling
 - Used extensively in practice.
 - Parameter free
 - Requires sampling conditional distributions.

References and Further Reading

- Sampling methods for approximate inference are described in detail in Chapter 11 of Bishop’s book.
- Another good introduction to Monte Carlo methods can be found in Chapter 29 of MacKay’s book (also available online: http://www.inference.phy.cam.ac.uk/mackay/itprnn/book.html)