Machine Learning - Lecture 17
Sequential Data & Unifying Perspective I
13.07.2010

Bastian Leibe
RWTH Aachen
http://www.mmp.rwth-aachen.de
leibe@umic.rwth-aachen.de

Course Outline

• Fundamentals (2 weeks)
 • Bayes Decision Theory
 • Probability Density Estimation
• Discriminative Approaches (4 weeks)
 • Lin. Discriminants, SVMs, Boosting
 • Dec. Trees, Random Forests, Model Sel.
• Generative Models (5 weeks)
 • Bayesian Networks + Applications
 • Markov Random Fields + Applications
 • Exact Inference
 • Approximate Inference
• Unifying Perspective (1 week)
 • HMMs, EM, CRFs, ...

Topics of This Lecture

• Approximate inference
 • Variational methods
 • Sampling approaches
• Sampling approaches
 • Sampling from a distribution
 • Ancestral Sampling
 • Rejection Sampling
 • Importance Sampling
• Markov Chain Monte Carlo
 • Markov Chains
 • Metropolis Algorithm
 • Metropolis-Hastings Algorithm
 • Gibbs Sampling

Recap: Sampling Idea

• Objective:
 • Evaluate expectation of a function \(f(a) \) w.r.t. a probability distribution \(p(a) \).
 \[\mathbb{E}[f] = \int f(a)p(a)\,da \]
• Sampling idea
 • Draw \(L \) independent samples \(a^{(l)} \) with \(l = 1, \ldots, L \) from \(p(a) \).
 • This allows the expectation to be approximated by a finite sum
 \[f = \frac{1}{L} \sum_{\ell=1}^{L} f(a^{(\ell)}) \]
 • As long as the samples \(a^{(l)} \) are drawn independently from \(p(a) \), then
 \[\mathbb{E}[f] = \mathbb{E}[f] \]
 ⇒ Unbiased estimate, independent of the dimension of \(a \)!

Topics of This Lecture

• Markov Chain Monte Carlo (cont’d)
 • Markov Chains
 • Metropolis Algorithm
 • Metropolis-Hastings Algorithm
 • Gibbs Sampling
• Models for Sequential Data
 • Independence assumptions
 • Markov models
• Hidden Markov Models (HMMs)
 • Graphical Model view
 • Forward-Backward Algorithm
 • Viterbi Algorithm
 • Baum-Welch Algorithm
 • Unifying view

Recap: Sampling from a pdf

• In general, assume we are given the pdf \(p(x) \) and the corresponding cumulative distribution:
 \[F(x) = \int_{-\infty}^{x} p(z)\,dz \]
• To draw samples from this pdf, we can invert the cumulative distribution function:
 \[u \sim \text{Uniform}(0,1) \Rightarrow F^{-1}(u) \sim p(x) \]
Recap: Rejection Sampling

- Assumptions
 - Sampling directly from \(p(z) \) is difficult.
 - But we can easily evaluate \(p(z) \) up to some norm. factor \(Z_k \):
 \[
 p(z) = \frac{1}{Z_k} q(z)
 \]
- Idea
 - We need some simpler distribution \(q(z) \) (called proposal distribution) from which we can draw samples.
 - Choose a constant \(\tau \) such that:
 \[
 \forall \gamma : kq(\gamma) \geq p(\gamma)
 \]
- Sampling procedure
 - Generate a number \(z \), from \(q(z) \).
 - Generate a number \(u \), from the uniform distribution over \([0,kq(z)] \).
 - If \(u < p(\gamma) \) accept sample, otherwise reject.

Recap: MCMC – Markov Chain Monte Carlo

- Overview
 - Allows to sample from a large class of distributions.
 - Scales well with the dimensionality of the sample space.
- Idea
 - We maintain a record of the current state \(z^{(t)} \).
 - The proposal distribution depends on the current state: \(q(z | z^{(t)}) \)
 - The sequence of samples forms a Markov chain \(z^{(t)}, z^{(t+1)}, \ldots \)
- Approach
 - At each time step, we generate a candidate sample from the proposal distribution and accept the sample according to a criterion.
 - Different variants of MCMC for different criteria.

Recap: Importance Sampling

- Approach
 - Approximate expectations directly (but does not enable to draw samples from \(p(z) \) directly).
 - Goal:
 \[
 \mathbb{E}[f] = \int f(z)p(z)dz
 \]
- Idea
 - Use a proposal distribution \(q(z) \) from which it is easy to sample.
 - Express expectations in the form of a finite sum over samples \(\{z^{(l)}\} \) drawn from \(q(z) \):
 \[
 \mathbb{E}[f] = \frac{1}{L} \sum_{l=1}^{L} p(z^{(l)}) q(z^{(l)})
 \]
 - At each time step, we generate a candidate sample from the proposal distribution and accept the sample according to a criterion.
 \[
 u \sim q(z^{(l)})
 \]
 \[
 \]
Markov Chains

- Question
 - How can we show that z^* tends to $p(x)$ as $\tau \to \infty$?

- Markov chains
 - First-order Markov chain:
 \[p(z^{(n+1)} | z^{(1)}, \ldots, z^{(n)}) = p(z^{(n+1)} | z^{(n)}) \]
 - Marginal probability
 \[p(z^{(n+1)}) = \sum_{z^{(n)}} p(z^{(n+1)} | z^{(n)}) p(z^{(n)}) \]

MCMC – Metropolis-Hastings Algorithm

- Metropolis-Hastings Algorithm
 - Generalization: Proposal distribution not required to be symmetric.
 - The new candidate sample z' is accepted with probability
 \[A(z' | z^*) = \min \left(1, \frac{p(z') q(z^*)}{p(z^*) q(z')} \right) \]
 - where i labels the members of the set of possible transitions considered.

- Note
 - When the proposal distributions are symmetric, Metropolis-Hastings reduces to the standard Metropolis algorithm.

Gibbs Sampling

- Approach
 - MCMC-algorithm that is simple and widely applicable.
 - May be seen as a special case of Metropolis-Hastings.

- Idea
 - Sample variable-wise: replace x_i by a value drawn from the distribution $p(z_i | x_{-i})$.
 - This means we update one coordinate at a time.
 - Repeat procedure either by cycling through all variables or by choosing the next variable.

Markov Chains - Properties

- Invariant distribution
 - A distribution is said to be invariant (or stationary) w.r.t. a Markov chain if each step in the chain leaves that distribution invariant.
 - Transition probabilities:
 \[T(z^{(n)}, z^{(n+1)}) = p(z^{(n+1)} | z^{(n)}) \]
 - Distribution $p(z)$ is invariant if:
 \[p(z) = \sum_{z'} T(z', z) p(z') \]

- Detailed balance
 - Sufficient (but not necessary) condition to ensure that a distribution is invariant:
 \[p'(z) T(z, z') = p'(z') T(z', z) \]
 - A Markov chain which respects detailed balance is reversible.

MCMC – Metropolis-Hastings Algorithm

- Properties
 - We can show that $p(x)$ is an invariant distribution of the Markov chain defined by the Metropolis-Hastings algorithm.
 - We show detailed balance:
 \[p(x) q(x' | x) A_i(x', x) = \min \left(p(x) q(x' | x), p(x') q(x | x') \right) \]
 \[= \min \left(p(x) q(x' | x), p(x') q(x | x') \right) \]
 \[= p(x') q(x | x') A_i(x', x) \]
Gibbs Sampling

Example
- Assume distribution $p(z_1, z_2, z_3)$.
 - Replace $z_i^{(t)}$ with new value drawn from $z_i^{(t+1)} \sim p(z_i|z_{\overline{i}}^{(t)})$.
 - And so on...

Properties
- The factor that determines the acceptance probability in the Metropolis-Hastings algorithm is:
 $$A(z^*, z) = \frac{p(z^*)q(z|z^*)}{p(z|z^*)q(z^*|z)} = \frac{1}{p(z|z^*)q(z^*|z)}$$
- I.e., we get an algorithm which always accepts!
 - If you can compute (and sample from) the conditionals, you can apply Gibbs sampling.
 - The algorithm is completely parameter free.
 - Can also be applied to subsets of variables.

References and Further Reading
- Sampling methods for approximate inference are described in detail in Chapter 11 of Bishop’s book.
- Another good introduction to Monte Carlo methods can be found in Chapter 29 of MacKay’s book (also available online: http://www.inference.phy.cam.ac.uk/mackay/itprnn/book.html)
Sequential Data

- Many real-world problems involve sequential data
 - Speech recognition
 - Visual object tracking
 - Robot planning
 - DNA sequencing
 - Financial forecasting

- In the following, we will look at sequential problems from a Graphical Models perspective...

Models for Sequential Data

- Simplest model
 - Treat all observations as independent (i.i.d.)

- Corresponding graphical model:

- What can we infer from such a model?
 - Only relative frequencies of certain events.
 - Such a model is of limited use in practice.
 - In practice, the data often exhibits trends that help prediction!

Markov Models

- Markov assumption
 - Each observation only depends on the most recent previous observation:
 \[p(x_1, \ldots, x_N) = \prod_{n=3}^N p(x_n|x_1, \ldots, x_{n-1}) \]
 \[= p(x_2) \prod_{n=3}^N p(x_n|x_{n-1}) \]

- First-order Markov chain:

- Still quite restrictive...
 - We often want to model longer-term trends over several successive sequential observations.

- Generalization: Second-order Markov chain
 \[p(x_1, \ldots, x_N) = p(x_1)p(x_2|x_1) \prod_{n=3}^N p(x_n|x_{n-1}, x_{n-2}) \]

Markov Models

- We can generalize this further
 - \(M \)th order Markov chains
 - However, this does not scale well.
 - Suppose all \(x_n \) can take on \(K \) possible values.
 - Number of parameters in the model:
 \[K^{M-1}(K - 1) \]
 ⇒ Exponential complexity!

- Goal
 - We want a model that is not as limited by the Markov assumption
 - But that can be specified by few parameters
 - We can achieve that by introducing a state space model.

Topics of This Lecture

- Markov Chain Monte Carlo (cont’d)
 - Metropolis Chain
 - Metropolis-Hastings Algorithm
 - Gibbs Sampling
 - Baum-Welch Algorithm
 - Unifying view

- Hidden Markov Models (HMMs)
 - Graphical Model view
 - Forward-Backward Algorithm
 - Viterbi Algorithm
 - Baum-Welch Algorithm
 - Unifying view
Hidden Markov Models (HMMs)

- **Traditional view**
 - The system is at each time in a certain state \(k \)
 - The (Markovian) state transition probabilities are given by the matrix \(A \):
 \[
 A = \begin{bmatrix}
 A_{11} & A_{12} & A_{13} \\
 A_{21} & A_{22} & A_{23} \\
 A_{31} & A_{32} & A_{33}
 \end{bmatrix}
 \]
 - We cannot observe the states directly, they are hidden.
 - We just know the initial probability distribution over states \(\pi \).
 - Each state produces a characteristic output, given by a probability distribution over output symbols \(\phi \).

- **Graphical Model view**
 - Introduce latent variables \(z \) for the current system state.
 - The observed output \(x \) is conditioned on this state.
 - The state transition probabilities \(p(z_n | z_{n-1}) \) are given by the entries of \(A \):
 \[p(z_{nk} = 1 | z_{n-1}, j = 1) = A_{jk} \]

- **Interpretation as a Generative Model**
 - Ancestral Sampling from an HMM
 - Choose initial latent variable \(x_1 \) according to \(\pi \)
 - Sample the corresponding observation \(x_1 \)
 - Choose state of variable \(x \) by sampling from \(p(x | z) \)

- **Three Main Tasks in HMMs**
 1. **Likelihood Estimation**
 - Given: an observation sequence and a model
 - What is the likelihood of this sequence given the model?
 - “Forward-backward algorithm”
 2. **Finding the most probable state sequence**
 - Given: an observation sequence and a model
 - What is the most likely sequence of states?
 - “Viterbi algorithm”
 3. **Learning HMMs**
 - Given: several observation sequences
 - How can we learn/adapt the model parameters?
 - “Baum-Welch algorithm”
1. Likelihood Estimation in HMMs

- **Problem definition**
 - Given: HMM model $\theta = (A, B, \pi)$
 - Sequence of observations $X = \{x_1, \ldots, x_T\}$
 - Goal: Compute the likelihood $p(X|\theta)$

- **Problem**: We don’t know the state sequence
 - Naïve approach: marginalize over all possible sequences
 $p(X|\theta) = \sum_{z_1, \ldots, z_T} p(X, z_1, \ldots, z_T | \theta)$
 - Effort: $O(K^{2T})$

Forward Pass

- **More efficient procedure**
 - Joint probability of observing x_1, \ldots, x_N and ending up in state z_N:
 $\alpha(n) = p(x_1, \ldots, x_n, z_n)$
 $= p(x_n | z_n) \sum_{z_{n-1}} p(z_{n-1}, \ldots, z_1, x_1 | \theta)$
 $= p(x_n | z_n) \sum_{z_{n-1}} p(z_{n-1} | z_{n-2}, \ldots, z_1, x_1 | \theta) p(z_{n-2}, \ldots, z_1, x_1 | \theta)$
 $= p(x_n | z_n) \sum_{z_{n-1}} p(z_{n-1} | z_{n-2}, \ldots, z_1, x_1 | \theta) \prod_{i=1}^{n-1} p(x_i | z_i)$
 - Computational effort: $O(K^2T)$

Backward Pass

- **Inverse procedure**
 - Joint probability of observing x_N, \ldots, x_1 starting from state z_1:
 $\beta(n) = p(x_N, \ldots, x_1 | z_1)$
 $= \sum_{z_{N-1}} p(x_N, \ldots, x_1 | z_N, z_{N-1}) p(z_{N-1} | z_1)$
 $= \sum_{z_{N-1}} p(x_N, \ldots, x_1 | z_N, z_{N-1}) p(z_{N-1} | z_1) p(z_N | z_{N-1}) p(z_{N-1} | \theta)$
 $= \sum_{z_{N-1}} p(x_N | z_N, z_{N-1}) p(z_{N-1} | z_1) p(z_N | z_{N-1}) p(z_{N-1} | \theta)$
 $= \sum_{z_{N-1}} p(x_N | z_N, z_{N-1}) p(z_{N-1} | z_1) p(z_{N-1} | \theta)$
 - Computational effort: $O(K^2T)$

Forward-Backward Algorithm

- **Initialization**
 - $\alpha(z_1) = p(x_1 | \alpha)$
 - $\beta(z_N) = 1$

- **Evaluate the likelihood**
 - Now, we can compute
 $p(X|\theta) = \sum_{z_N} \alpha(z_N) \beta(z_N)$
 - In particular
 $p(X|\theta) = \sum_{z_N} \alpha(z_N)$

Interpreting the Result

- **Computing the likelihood**
 - Obtaining $p(X)$ means taking the joint distribution $p(X, Z)$ and summing over all possible values of Z.
 - This means summing over all possible paths through the lattice diagram.
 - There are exponentially many such paths.
 - By expressing the likelihood as $p(X) = \sum_{z_N} \alpha(z_N)$
 - we have reduced the cost to a linear number of paths by swapping the order of sums and multiplications.
 - But wait... haven’t we seen this trick before?
1. Likelihood Estimation in HMMs Revisited

- Graphical Model View
 - We have seen that we can write the HMM as a graphical model with latent variables x_t.
 - What we now want to compute are the marginals of X.
 \[p(X) = \sum_Z p(X, Z) \]
 ⇒ Use the Sum-Product algorithm!

Sum-Product Algorithm for HMMs

- Preparation
 - Since we always condition on $x_{1:t}$, we can simplify this:
 \[h(x_1) = p(x_1) \frac{p(x_1 | x_1)}{} \]
 \[f_n(x_{n-1}, x_n) = p(x_{n-1} | x_n) \frac{p(x_{n-1} | x_n)}{} \]
 - New factors:
 \[h(x_1) = p(x_1) \frac{p(x_1 | x_1)}{} \]
 \[f_n(x_{n-1}, x_n) = p(x_{n-1} | x_n) \frac{p(x_{n-1} | x_n)}{} \]
 - Apply Sum-Product algorithm
 - Set z_0 as the root node and pass messages from the leaf node h to the root.

Sum-Product Messages

\[f_n(x_{n-1}, x_n) = \prod_{l \in \text{set}(f_n)} f_l(x_{n-1}, x_n) \]

\[\mu_{x_{n-1} \rightarrow f_n(x_{n-1})} = \frac{f_n(x_{n-1}, x_n)}{\sum_{x_{n-1}} f_n(x_{n-1}, x_n)} \]

\[\mu_f(x_n) = \prod_{l \in \text{set}(f_n)} \mu_{x_{n-1} \rightarrow f_n(x_{n-1})} \]

\[p(x_n) = \sum_{x_{n-1}} \mu_{x_{n-1} \rightarrow f_n(x_{n-1})} \]

Comparison:
\[\alpha(x_n) = p(x_n) \sum_{x_{n-1}} \alpha(x_{n-1}) \]

Sum-Product Messages

- Initialization
 \[h(x_1) = p(x_1) \]
 \[p(x_1 | x_1) \]
 \[\alpha(x_1) = p(x_1 | x_1) \]
 ⇒ The results are equivalent!
 ⇒ Forward-backward algorithm is a special case of Sum-Product!

Machine Learning, Summer'10

Image source: C.M. Bishop, 2006
Three Main Tasks in HMMs

1. Likelihood Estimation
 - Given: an observation sequence and a model
 - What is the likelihood of this sequence given the model?
 "Forward-backward algorithm" ➔ special case of Sum-Product!

2. Finding the most probable state sequence
 - Given: an observation sequence and a model
 - What is the most likely sequence of states?
 "Viterbi algorithm"

3. Learning HMMs
 - Given: several observation sequences
 - How can we learn/adapt the model parameters?
 "Baum-Welch algorithm"

2. Finding the Most Probable State Sequence

- Problem definition
 - Given: HMM model \(\theta = (A, \pi, \gamma) \)
 - sequence of observations \(X = \{ \mathbf{x}_1, \ldots, \mathbf{x}_T \} \)
 - Goal: Compute the most probable sequence of states

\[
\begin{align*}
\w(Z) &= \max_{Z} \mathbb{P}(X, Z) \\
 &= \max_{z_1, \ldots, z_T} \mathbb{P}(X_1, \ldots, X_T, z_1, \ldots, z_T)
\end{align*}
\]

- Wait... Doesn’t this also look familiar?
 - Yes! We can simply apply the Max-Sum algorithm here.

References and Further Reading

- HMMs and their interpretation as graphical models are described in detail in Chapter 13 of Bishop’s book.